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Protein structure prediction and design can be regarded as two

inverse processes governed by the same folding principle.

Although progress remained stagnant over the past two

decades, the recent application of deep neural networks to

spatial constraint prediction and end-to-end model training has

significantly improved the accuracy of protein structure

prediction, largely solving the problem at the fold level for

single-domain proteins. The field of protein design has also

witnessed dramatic improvement, where noticeable examples

have shown that information stored in neural-network models

can be used to advance functional protein design. Thus,

incorporation of deep learning techniques into different steps of

protein folding and design approaches represents an exciting

future direction and should continue to have a transformative

impact on both fields.
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Introduction
The diverse physiological functions performed by pro-

teins across all organisms are mediated by the unique

three-dimensional structures adopted by specific amino

acid sequences. Given the cost, both financially and

timewise, associated with experimentally determining a

protein’s structure and function, extensive effort has been

made to develop computational methods capable of

modeling the structures of natural protein sequences

and/or designing new sequences with novel structures

and functions beyond proteins observed in nature. The

technique of deep machine learning [1], which has revo-

lutionized many fields of research, including computer

vision, speech recognition, strategy games and medical
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diagnosis, has recently made a significant impact on

protein structure prediction and design. In this review,

we will highlight methods used for protein structure

prediction and protein design, as well as the impact

brought about by deep learning on these fields, where

a particular emphasis will be put on developments that

have occurred within the past few years.

Protein structure prediction and impact
brought about by deep learning
The goal of protein structure prediction is to use compu-

tational methods to determine the spatial location of

every atom in a protein molecule starting from its amino

acid sequence. Depending on whether a template struc-

ture is used, protein structure prediction approaches can

be generally categorized as either template-based model-

ing (TBM) or template-free modeling (FM) methods.

While TBM constructs models by copying and refining

structural frameworks of other related proteins, called

templates, identified from the PDB, FM aims to

predict protein structures without using global template

structures. FM methods have also been referred to as ab
initio or de novo modeling approaches. A general pipeline

that illustrates the key steps involved in traditional TBM

and FM methods is depicted in Figure 1.

Classical approaches to template based modeling

There are four key steps involved in TBM methods: (1)

identification of experimentally solved proteins (tem-

plates) structurally related to the protein to be modeled

(query), (2) alignment of the query and the template

proteins, (3) construction of the initial structure frame-

works by copying the aligned regions of the template

structure, and (4) construction of the unaligned regions

and refinement of the global structure. The first two steps

are intertwined and usually followed in a single procedure

called template recognition, while the last two steps are

often accomplished in the template structure refinement

procedure.

Depending on the evolutionary distance between the

query and template, TBM has been historically divided

into comparative modeling (CM), which is designed for

targets with close homologous templates where the tem-

plates can typically be identified by sequence-based

alignment, and threading, which is designed for detecting

more distantly homologous templates by combining

sequence profiles and/or Hidden Markov Model

(HMM) alignment with local structure feature prediction

[2,3]. Examples of predicted local structural features
www.sciencedirect.com
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Figure 1
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Typical steps involved in template-free and template-based protein structure prediction approaches. Starting from a query sequence, an MSA is

generated by identifying homologous sequences from a sequence database. The MSA is then converted into a sequence profile and used to

predict structural features such as the secondary structure, backbone torsion angles and solvent accessibility. For fragment assembly based FM

methods, these structural features together with the sequence profile are used to search a fragment library to identify high scoring local

fragments. For TBM methods, they are used by threading protocols to identify global template structures. Meanwhile, co-evolutionary information

is extracted from the MSA and fed into a deep residual neural network to predict spatial restraints such as inter-residue long-range contacts,

distances, hydrogen bonds and torsion angles. For full-length model construction, structure assembly simulations are performed under the

guidance of a composite force field which usually combines the generic knowledge-based and/or physics-based energy function with deep neural

network feature prediction (plus template-based restraints in the case of TBM). Finally, representative models are typically selected from the

lowest energy conformations or based on structural clustering, followed by atomic-level refinement to generate the final model.
include torsion angles, secondary structure, and solvent

accessibility [2]. With the progress of the field, the dif-

ference between CM and threading has become increas-

ingly blurred and most of the TBM approaches nowadays

start with templates identified by advanced threading

programs. Since different threading programs are trained

with different scoring function and alignment algorithms,

the template recognition and alignment results are often

diverse for the same query sequence. This has resulted in

the prevalence of meta-threading programs [4], which

collect and combine template alignments from a set of

complementary threading algorithms. Since there are

many more ways for a threading program to get incorrect

alignments than to get a correct alignment [5], the

consensus template selected from the meta-threading
www.sciencedirect.com 
templates often has a higher accuracy on average than

any of the individual threading programs.

Since threading templates only provide gapped C a
traces, which have no practical use for detailed protein

function annotation and/or virtual ligand screening, many

programs have been developed to assemble and refine

full-length atomic structural models starting from the

template alignments. Among them, MODELLER [6]

is one of earliest programs which builds atomic models

by optimally satisfying spatial restraints derived from a

threading alignment, where the restraints are expressed as

probability density functions for the restrained features.

While TBM approaches based solely on restraint satis-

faction often constrain the models close to the template,
Current Opinion in Structural Biology 2021, 68:194–207
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TASSER represents one of the first approaches that

showed a consistent ability to draw the templates closer

to the native structure [7]. The most successful TBM

method is probably I-TASSER [8], which is an extension

of TASSER and has been consistently ranked as the top

automated method in the community-wide Critical

Assessment of Structure Prediction (CASP) experiment,

whose goal is to benchmark the state of the art in protein

structure prediction [9]. In the I-TASSER pipeline, con-

tinuous fragments are excised from the template align-

ments and reassembled through replica-exchange Monte

Carlo (REMC) simulations, where the unaligned regions

(mainly loops) are built ab initio using a lattice-based

system in junction with the aligned fragments. One of

the key reasons for the success of I-TASSER, especially

on template refinement, is its effective combination of

multiple threading templates (often more than 20–50)

under the guidance of an optimal knowledge-based force

field whose parameters were extensively optimized using

large-scale structural decoys. Following a similar idea,

RosettaCM was developed which assembles global struc-

tural folds by recombining aligned segments of threading

templates and building unaligned regions de novo in

torsion space using gradient-based minimization [10].

Classical approaches to template-free modeling (FM)

Unlike TBM, FM approaches predict protein structures

without the use of global template information

(Figure 1). One of the most effective methods for

constructing FM models is fragment assembly, an idea

originally pioneered by Bowie and Eisenberg in

1994 [11]. More modern fragment assembly approaches

include Rosetta [12] and QUARK [13], which first

identify local structural fragments, with either discrete

(3 and 9 AA long) or continuous lengths (1–20 AA), from

other unrelated proteins based on the profile-profile

similarity and comparison of the local structural features

such as secondary structure, solvent accessibility and

torsion angles, either predicted for the query or

extracted from the templates. In the next step of

fragment assembly simulations, the backbone torsion

angles for a specific region of the simulated structure are

replaced with those from a selected fragment, either

assuming ideal bond lengths and angles [12], or directly

taking these from the fragments themselves [13]. Loop

closure may also be used, which adjusts the torsion

angles around the substitution site in order to prevent

large conformational changes downstream [14]. The

rationale for constructing models through fragment

assembly is twofold: it reduces the entropy of the

conformational search space, while ensuring the local

structures of models are well formed as the fragments

are selected from experimental structures of other pro-

teins, which can help compensate for inaccuracies in the

energy functions used for modeling. To improve the

efficiency of conformational sampling, Rosetta [12] uses

simulated annealing Monte Carlo simulations, while
Current Opinion in Structural Biology 2021, 68:194–207 
QUARK [13] uses REMC simulations with as many

as 11 different conformational moves and extracts dis-

tance-profile-based contact maps from the generated

fragments in order to guide the simulations towards

the native structure [15].

Both QUARK and Rosetta have demonstrated excellent

performance in the FM section of the CASP experiment by

successfully folding protein targets that lack identifiable

homology templates [16��,17,18]. Despite the success, the

Monte Carlo simulation-based fragment assembly process

canbetime-consumingcomparedtoTBMapproaches, since

FM methods need to create models starting from random

conformations. Encouraging progress has been recently

made by rapid optimization techniques such as gradient

descent to accurately fold protein sequences [19��,20��].
One condition for the success is that a significantly high

number of long-range spatial constraints are required to

reshape and smoothen the energy landscape so that the

gradient descent-based optimization search is not overly

trapped in local minima. Meanwhile, many repeated simula-

tions must be performed in order to ensure the identification

of the global minimum energy state [19��].

Early effort in inter-residue contact prediction to assist

FM

Since the structural fold of a protein can be specified by

the inter-residue contact map, considerable effort has

been devoted to contact prediction. One of the earliest

sequence-based contact prediction methods used corre-

lated mutations observed in multiple sequence align-

ments (MSAs) to predict inter-residue contact maps

[21]. The hypothesis behind the approach was that if

mutations that occur at two positions in an MSA are

correlated, these positions are more likely to form a

contact in 3D space. This is because there is evolutionary

pressure to conserve the structures of proteins and a

mutation at one position may be rescued by a correspond-

ing mutation at a nearby residue. The accuracy of co-

evolution-based contact map prediction remained low for

many years due to the inability to distinguish between

direct and indirect interactions, where indirect interac-

tions occur when residues appear to co-evolve but do not

actually form contacts. For example, if Residues A and B

are both in contact with Residue C, A and B often appear

as if they co-evolve even when there is no physical

contact between them. There is evidence showing that

such co-evolution may have a functional cause [22] rather

than a structural one, which resulted in the failure of

structure-based contact derivation.

Progress in contact prediction remained stagnant for some

time. However, a leap in contact prediction accuracy took

place when algorithms started utilizing global prediction

approaches. Early methods mainly predicted contacts

between residue pairs one-at-a-time using techniques

such as mutual information, thus ignoring the interactions
www.sciencedirect.com
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with other residue pairs and the global context in which

the interactions took place; this is largely why it was

difficult for these local methods to distinguish between

direct and indirect interactions. The introduction of

global statistical models determined through the use of

direct coupling analysis (DCA) was more successfully

able to distinguish between these direct and indirect

interactions [23,24]. The goal of such global statistical

models is to determine the set of direct interactions that

most harmoniously accounts for the observed sequence

co-variation by simultaneously considering the entire set

of pairwise interactions. Since all pairwise interactions are

simultaneously considered, instead of just considering

one interaction at a time and ignoring the global context

in which the interactions take place, DCA was able to

significantly improve the contact prediction accuracy.

Many DCA techniques fit a Markov random field (MRF),

or more specifically a Potts model, to an MSA. An MRF is

a graphical model that represents each column of an MSA

as a node that describes the distribution of amino acids at

a given position, where the edges between nodes indicate

the joint distributions of amino acids between each pair of

positions. The couplings or co-evolutionary parameters

can be determined from the edge weights. Since fitting an

MRF model using its actual likelihood function is com-

putationally intractable due to the need to calculate the

partition function, various approximations have been

developed including those based on message passing

[23], Gaussian approximation [25], mean-field approxi-

mation [24], and pseudo-likelihood maximization [26].

Another popular method was introduced by PSICOV [27],

which determines the coupling parameters by estimating

the inverse covariance matrix or precision matrix using a

graphical LASSO penalty (L1 regularization) instead of

directly fitting an MRF model to an MSA. This was later

extended by ResPRE [28], where the inverse covariance

matrix is estimated using L2 regularization instead of L1

regularization. Network deconvolution has also been used

to distinguish direct from indirect interactions deter-

mined from co-evolutionary data [29].

Accurate structural feature prediction by deep learning

techniques

The field of protein structure prediction has been con-

siderably transformed by the recent use of deep machine

learning techniques to generate high quality geometric

feature predictions. In addition to the high accuracy of

model training enabled by multi-layer neural networks

[1], another important advantage of deep learning is its

ability to predict multiple structural features, including

contacts, distances, inter-residue torsion angles and

hydrogen bonds. The combination of these structural

features with the classical folding simulation methods

has significantly improved the modeling accuracy of

protein structure prediction, especially for FM protein

targets which lack homologous templates [16��,19��,20��].
www.sciencedirect.com 
The early focus of deep learning in protein structure

prediction was on contact map prediction following the

long history of contact prediction in the field. Along this

line, RaptorX-Contact [30��] reformulated the pair-wise

contact prediction problem as an image segmentation task

where the whole contact map is regarded as the image and

each residue pair corresponds to a pixel in the image.

The success of this approach can be partially attributed

to the ability of deep learning to simultaneously consider

the global set of pair-wise interactions instead of consider-

ing only one interaction at a time, thereby leading to more

accurate discrimination between direct and indirect con-

tacts [30��]. The approach introduced by RaptorX-Contact

was adapted by methods such as ResPRE [28] and

TripletRes [31�], which use a similar deep learning archi-

tecture but with a unique set of features that include

multiple co-evolutionary coupling matrices directly

deduced from deep MSAs without post-processing.

A similar residual neural network was later extended to

predict the probability that the distance between two

residues falls within a given distance range instead of

predicting a binary contact map [32]. The power of

distance map-guided folding was convincingly demon-

strated by AlphaFold in the CASP13 experiment, in

which the program utilized an ultra-deep neural network

composed of 220 residual blocks to predict distance maps

for a query sequence [19��]. The distance maps were then

used to guide their fragment assembly and gradient

descent-based folding simulations for full-length struc-

ture construction. AlphaFold also used a unique fragment

generation strategy where they leveraged deep learning

to produce short structural fragments de novo. To accom-

plish this, they trained a generative network to create

fragments based on prediction of the torsional angles for a

selected region of a protein. This approach allows for the

generation of fragments conditioned on the input features

and eliminates the need to identify near native fragments

from a library of existing fragment structures.

The success of deep learning-based contact and distance

map prediction has raised the question of what other

constraints can be accurately predicted using deep learn-

ing. As protein structure modelers have known for years

that knowledge-based energy functions that are depen-

dent only on residue–residue distances are often not as

accurate as those that use both distances and orientations

[33], a natural extension of distance prediction is inter-

residue torsion angle orientation prediction. Orientation-

dependent energy functions are important as certain

types of inter-residue interactions require not only dis-

tance proximity but also specific orientations between the

residue pairs, for example, b-strand pairing. Furthermore,

the geometry of a structure cannot be uniquely deter-

mined without torsional angle orientation information,

as distance information alone cannot differentiate

between a pair of mirrored structures. Recently, trRosetta
Current Opinion in Structural Biology 2021, 68:194–207
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has advanced the idea of inter-residue torsion angle

prediction by simultaneously predicting both pairwise

residue distances and inter-residue torsion angles from

co-evolutionary features using a unified deep ResNet

[20��]. More recently, Li et al. extended the deep learning

predictor TripletRes to DeepPotential and predicted the

ensemble of contact, distance, torsion angle and hydrogen

bonding maps, which were found to be highly effective at

modeling non-homologous protein targets in the CASP14

experiment [34].

End-to-end training with attention networks has nearly

solved the single-domain protein structure prediction

problem

The most exciting progress in the history of protein

structure prediction was recently brought about by Alpha-

Fold2, the second iteration of AlphaFold developed by

the Google DeepMind team [35��], which achieved an

unprecedented modeling accuracy in the CASP14 exper-

iment. Out of the 89 domains with experimentally

released structures, AlphaFold2 generated first-rank

models with TM-scores >0.5 for 88 domains, where

59 of them had TM-scores >0.914. Here, TM-score is

a sequence length-independent metric that measures

protein structural similarity and takes a value in the range

of (0, 1) [36], where PDB statistics show that a TM-score

>0.5 indicates that two structures share approximately

the same SCOP/CATH fold [37]. Moreover, we collected

a set of 112 single-domain proteins whose structures were

solved by both NMR and X-ray crystallography and had

sequence identities >95% and alignment gaps <10 AA,

where we found the average TM-score was 0.807 �
0.107 between the NMR and X-ray structures. Thus,

AlphaFold2 could fold nearly all individual domains in

CASP14, with around 2/3 (=59/89) of the cases having

accuracy comparable to low-to-medium resolution exper-

imental models if we use a cutoff TM-score of 0.914

(=0.807 + 0.107). Figure 2a lists a comparison of the

AlphaFold2 first-rank models (green) overlaid on the

experimentally solved structures (red) for all 23 free-

modeling (FM) targets, which are the hardest targets to

model due to the lack of templates in the PDB. Alpha-

Fold2 created the correct fold for the core regions for all

but one target (T1029-D1), which was a small single-

domain protein (125 AA) whose structure was solved by

NMR. For the other two targets with the lowest TM-

scores (T1047d1-D1 and T1070-D1), which came from

one chain of a heterodimer and the N-terminal domain of

a 4-domain protein, respectively, the error of the Alpha-

Fold2 models was mainly at the disordered tail regions

but, again, the core regions were correctly folded. These

data suggest that AlphaFold2 nearly solved the problem

of single-domain protein structure prediction, at least at

the fold level.

Although most of the top participating groups in CASP14

achieved quite a significant improvement over CASP13
Current Opinion in Structural Biology 2021, 68:194–207 
[38], AlphaFold2 outperformed the second-best group by

a large margin with the average TM-score differing by

23% (0.903 versus 0.732). For the FM targets, the gap

increased to 38% (0.840 versus 0.608). Interestingly, there

was nearly no correlation (with a PCC = 0.145) between

the TM-score of the AlphaFold2 models and the loga-

rithm of the Neff (the number of effective sequences) of

the multiple sequence alignments collected by the

DeepMSA program [39] searched through metagenome

sequence databases (Figure 2b). For the other top ten

groups, such correlation is obvious with PCCs ranging

from 0.491 to 0.637. Although different groups used

different strategies to collect MSAs and some may

have involved manual MSA search, the data shown in

Figure 2b are encouraging as the modeling accuracy by

AlphaFold2 likely depends less on the availability of

evolutionarily homologous sequences in sequence

databases.

Compared to the first iteration of AlphaFold in CASP13,

which was driven by convolutional neural network-

based distance map prediction, one of the major new

developments of AlphaFold2 is the attention-based

neural network architecture that attends arbitrarily over

the full MSA, which allows the system to select relevant

sequences from the MSAs and extract richer input

information. Moreover, instead of using gradient

descent optimization to construct models based on

the predicted distance restraints, as AlphaFold did in

CASP13, AlphaFold2 utilizes a full end-to-end training

system from sequence to structure models using itera-

tive structural refinement based on local structural

error estimation. As part of this, the system replaces

traditional folding simulations with a structure module

composed of 3D equivariant transformer neural net-

works, which treat each amino acid as a gas of 3D rigid

bodies and directly builds the protein backbone and

side-chains. All these advantages, together with the

extensive computing resources that are beyond what

are accessible to most of the academic research labora-

tories, contribute to the significant improvement of the

state-of-the-art of deep learning-based protein structure

prediction [35��]. As an unprecedented achievement

made by an industrial research company, however,

the scientific impact will critically depend on whether

and how far the method and technique, including the

source code of the program, are made publicly available

to the community.

Advances in functional de novo protein design
De novo protein design

Protein design can be conceptually regarded as the

inverse of protein structure prediction in that protein

structure prediction aims to model unknown 3D struc-

tures from known sequences, while protein design

attempts to identify new amino acid sequences that fold

into given structural frameworks. De novo protein design
www.sciencedirect.com
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Figure 2

(a)

(b)

T1094-D2, 0.963 T1037-D1, 0.959 T1041-D1, 0.953 T1096-D1, 0.940 T1042-D1, 0.936

T1038-D1, 0.904T1090-D1, 0.915T1074-D1, 0.916T1093-D3, 0.932T1049-D1, 0.934

T1033-D1, 0.889 T1093-D1, 0.881 T1043-D1, 0.879 T1064-D1, 0.870 T1039-D1, 0.861

T1027-D1, 0.633T1040-D1, 0.784T1061-D2, 0.813T1096-D2, 0.854T1031-D1, 0.855

T1070-D1, 0.620 T1047s1-D1,0.559 T1029-D1, 0.469

Current Opinion in Structural Biology

Domain-level protein structure prediction results for AlphaFold2 in the CASP14 experiment. (a) The first-rank models by AlphaFold2 (green)

superposed on the experimental structures (red) for the 23 FM domains, together with the domain ID and TM-score values. The pictures are listed

in descending order of the TM-scores of the AlphaFold2 models. (b) TM-score versus Neff, the number of effective sequences in the multiple

sequence alignments collected by DeepMSA, for all 89 FM (stars) and TBM and TBM/FM (circles) domains. Dashed and dashed-dotted lines mark

the two TM-score cutoffs at 0.5 and 0.914, respectively.

www.sciencedirect.com Current Opinion in Structural Biology 2021, 68:194–207
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usually contains two steps, the construction of a structural

framework (or fold) and the identification/optimization of

new amino acid sequences for that framework.

In addition to its use in protein structure prediction, the

idea of fragment assembly has been successfully used to

address the first step in de novo protein design, which is

the construction of new protein folds beyond those

observed in nature. One of the landmark achievements

in de novo protein design was the design of Top7 in

2003 [40], which was one of the few proteins designed

without a natural structural analog. The design of Top7

and other more recent de novo designed proteins

have expanded on the strategies used by fragment
Figure 3

Typical steps involved in a fragment assembly based approach to design n

together with user-defined packing restraints, such as residue–residue cont

PDB structure library using gapless threading to generate position-specific 

1 to 20 residues long, are identified based on the complementarity between

and backbone torsion angles. Then during the folding simulations, the top s

sequence-independent energy function, which accounts for fundamental rul

backbone hydrogen bonding, favorable backbone torsion angles, steric clas

restraints supplied by the user. As the method is sequence independent, ge

evaluate energy terms such as steric clashes. Following the folding simulati

simulation decoys, by selecting the lowest energy structure, or through wha
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assembly based structure prediction methods, where a

generic pipeline for such approaches is highlighted in

Figure 3. Instead of starting from an amino acid sequence,

popular structure design methods such as RosettaRemo-

del [41] start from a predefined secondary structure and

other user-defined constraints such as inter-residue dis-

tances, which define a target fold. Fragments are then

picked with secondary structures and backbone torsion

angles that are compatible with the predefined secondary

structure. The simulation strategy is slightly altered as the

amino acid-specific energy function is replaced with an

energy function that is independent of the amino acid

sequence and generic side-chain centers of mass are used

to avoid steric clashes [41]. Another popular method for

designing backbone structures is to generate them using
Current Opinion in Structural Biology

ew protein structures. Starting from the desired secondary structure

act/distance restraints, the query is searched through a non-redundant

fragment structures. High scoring fragments, which may range from

 the desired secondary structure and a fragment’s secondary structure

coring local fragments are assembled under the guidance of a

es that govern protein folding such as secondary structure packing,

hes, radius of gyration, as well as the artificial contact/distance

neric side-chain centers of mass, typically those for valine, are used to

ons, the final design may be selected based on clustering of the

tever filter the user deems appropriate.
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idealized parametric models [42], although this approach

is typically more useful for designing helical bundle

proteins and is not as effective at designing proteins with

more complex topologies or hydrogen bonding networks.

Following the generation of the initial target folds based

on the input constraints, iterative rounds of sequence and

structure optimization are performed [41] for amino acid

sequence design. Here, sequence design and structure

optimization can be performed using combined physics

and knowledge-based energy functions such as Rosetta

[43�] or EvoEF2 [44]. These approaches typically

start from a fixed protein backbone, where the amino
Figure 4

A protocol for evolution-based protein–protein interaction design used by EvoDe

interface structural homologs are identified from the PDB library through TM-alig

from the alignments of the monomer/interface analogs and used in conjunction 

design novel protein sequences. The final designs are selected from the center 

www.sciencedirect.com 
acid side-chain conformation or rotamer of a randomly

selected position is substituted for another rotamer

randomly selected from a rotamer library. The corre-

sponding energy changes caused by the mutation are

then calculated using the physical energy function, where

mutations are accepted or rejected based on the Metrop-

olis criterion. Following sequence design, local structure

optimization is performed and the sequence design/back-

bone optimization is iteratively repeated [41].

Most recently, Pearce et al. proposed an automated pro-

tein design pipeline, EvoDesign (Figure 4) [45�], which

incorporates evolutionary profiles derived from natural
Current Opinion in Structural Biology

sign. The procedure starts from an input complex, for which monomer/

n and iAlign searches, respectively. Structural profiles are then constructed

with a physics-based potential, EvoEF2, to guide the REMC simulations to

of the largest cluster of designed sequence decoys.

Current Opinion in Structural Biology 2021, 68:194–207
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structural analogs in the force field in order to enhance

the folding stability of the designed sequences. For

protein–protein interaction (PPI) design, EvoDesign

starts from an input complex structure and identifies

both monomeric and interface structural analogs from

databases of solved protein structures. These structural

analogs are converted into PPI evolutionary profiles,

which are then combined with a physical energy function

for PPI design, EvoEF2, to guide the REMC sequence

design simulations.

De novo design of proteins with complex structures and

functions

The past few years have seen rapid progress in de novo
protein design, where proteins with increasingly complex

structural characteristics and functions have been created

[46–50,51�,52–56]. Earlier de novo designed proteins had

highly idealized structures without functional sites and

with a single low energy conformation. However, recent

work by Wei et al. demonstrated that it is possible to

design proteins that adopt multiple low energy states that

assume significantly different conformations [46]. In the

study, the authors used Rosetta to design a helical bundle

that either adopted a short (�66 Å height) or long (�100 Å

height) state based on the environmental conditions,

which mimicked the action of membrane fusion proteins.

Additionally, new studies have focused on designing

proteins with more complex logical functions for use in

synthetic biology. In this regard, Chen et al. was able to

design logic gates that controlled transcription and enzy-

matic activity via the association of different designed

coiled-coil heterodimers [47]. The backbone structures of

each coiled coil were designed in a previous study using

parametric modeling to generate the helices and loop

fragments to connect them into a single chain [48]. The

association between different heterodimers was achieved

using the Rosetta HBNet protocol [49], which can be

used to exhaustively enumerate all of the hydrogen bond

networks available for a given design space in order to

design highly specific protein–protein interactions.

Rosetta has also been applied to the classical problem of

designing proteins with significant b-sheet content,

which have enriched hydrogen bonding patterns. For

example, Dou et al. designed fluorescence-activated

b-barrel proteins using either ideal parametric models

or fragment assembly [50]. Interestingly, the authors

found that the ideal backbones generated by the paramet-

ric models had unfavorable steric strain and hydrogen

bonding interactions. These problems were alleviated by

building backbones using fragment assembly and intro-

ducing kinks and bulges into the structures, producing a

stable and functional protein. Another challenging prob-

lem in protein design is the ability to create proteins that

can bind to highly functionalized small molecules. Polizzi

et al. addressed this problem by creating a unit of protein

structure called the van der Mer, which directly maps the
Current Opinion in Structural Biology 2021, 68:194–207 
backbone of each amino acid to preferred positions of

interacting chemical groups [56]. They then used their

method to design proteins capable of binding the com-

plex drug apixaban, which has implications for the de novo
design of customized biosensors and enzymes, among

other applications.

De novo design of therapeutic proteins

Other studies have focused on designing proteins for ther-

apeutic applications. One strategy to accomplish this goal is

to design proteins that are capable of binding natural

proteins with high affinity. For instance, Chevalier et al.
described a protocol for generating large pools of mini-

proteins with different backbone scaffolds composed of

�40 residues produced by fragment assembly [51�].
The authors demonstrated that given advances in high

throughput experimental techniques and computational

modeling, an unprecedented number of designed proteins

could be tested. This resulted in the production of highly

stable designs that could bind to influenza hemagglutinin

and provide prophylactic protection without eliciting an

adverse immune response [51�]. A different study by Silva

et al. used parametric modeling to design mimics of IL-2

and IL-15 capable of binding the IL-2 receptor bgc hetero-
dimer but without binding sites for CD25 and CD215,

producinga potentanti-cancer effect without the toxicity of

natural IL-2 therapeutics [52]. Another strategy is to use de
novo design methods such as Rosetta, TopoBuilder,

and EvoDesign to generate computationally designed

immunogens with topologies designed to stabilize

functional motifs that are capable of inducing the produc-

tion of virus-neutralizing antibodies [53–55,57]. These

successes highlight the potential for de novo protein design

to create therapeutics with tailor-made characteristics and

superior efficacy compared to those produced by traditional

approaches.

Given the havoc caused by the ongoing COVID-19

pandemic, researchers are seeking to develop new pro-

teins that can serve as therapeutic treatments against the

epidemic. Along this line, Huang et al. proposed the

design of de novo peptides to inhibit the association of

the SARS-CoV-2 Spike protein, which is the pathogen

behind COVID-19, with the human ACE2 receptor [58].

The in silico assay experiments showed that the peptide

inhibitors designed by EvoEF2 and EvoDesign had a

significantly higher affinity for the binding domain of the

Spike protein than the wildtype hACE2 receptor did.

With a similar goal, Cao et al. applied Rosetta’s fragment

assembly design method to design protein inhibitors for

the SARS-CoV-2 Spike protein [59]. The authors used

two design strategies, either incorporating the native

helical interface between ACE2 and the Spike protein

or generating novel interfaces de novo by optimizing the

rotamer interaction field. After affinity maturation, they

found the second approach was able to create proteins
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capable of potently inhibiting SARS-CoV-2 with picomo-

lar affinity.

Improving the accuracy of de novo fold design without

user-defined constraints

One prominent challenge associated with designing pro-

teins with novel structures and functions is that de novo
protein design remains somewhat of an art form, as

designers are often required to manually specify how the

different secondary structure elements (SSEs) should pack

in order to produce a well-folded protein [50,51�,60]. Fur-

thermore, the design success rate is quite low in some

studies, which may be improved by altering the design

procedure in an iterative fashion based on the experimental

results [51�]. To improve the success rate of de novo protein

design, Pearce and Zhang recently developed a new

method called FoldDesign (https://zhanglab.ccmb.med.

umich.edu/FoldDesign/). The method combines fragment

assembly with multiple conformational movements and an
Figure 5
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Protein folds designed de novo starting from 9 unique secondary structures

denoted PDB IDs) whose secondary structures were used as input are show

(c) 3 a proteins. Even in the absence of pre-defined packing rules, such as 

topologies with lower or comparable Rosetta and EvoEF2 energies.
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optimized physics-based and knowledge-based energy

function to design protein-like scaffolds. Figure 5 presents

scaffoldsdesignedusingFoldDesignstarting from9 unique

secondary structure topologies (a, b and ab folds) obtained

from native proteins without any pre-defined contact or

distance restraints, where the sequences for each scaffold

were designed using EvoDesign [45�]. Notably, even in

the absence of user-defined packing constraints, the

method is able to produce well-folded scaffolds with

complex tertiary structures, such as those composed of

curved b-sheets, which required extensive pre-definition

of packing rules in previous studies [50]. To assess the

quality of the designed scaffolds, the designs along with

the native proteins whose secondary structure were used

as input to FoldDesign were scored using the Rosetta

ref2015 [43�] and EvoEF2 energy functions [44]. All of

the designs had lower Rosetta energies and 7 out of

9 had lower EvoEF2 energies than their native counter-

parts, demonstrating the ability to use computational
Current Opinion in Structural Biology

. The designed folds and corresponding wildtype native proteins (with

n side-by-side for (a) 3 b proteins, (b) 3 a/b and a + b proteins, and

inter-residue distance restraints, the designed folds have well-packed
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simulations to produce protein-like structures with new

folds starting only from loose constraints such as the

desired secondary structure composition.

Deep learning applied to protein design

Deep learning has recently been successfully employed

to various protein design strategies. One such strategy is

to design a sequence given a known protein structure,

where the native sequence recapitulation rate, or the

percentage of native amino acids recovered at each posi-

tion, is typically used as one of the key validation criteria.

As an example of such methods, SPIN combines a neural

network composed of two hidden layers with features

such as the backbone torsion angles for a selected residue,

fragment-derived sequence profiles, and rotamer-based

energy profiles to design favorable sequences for a given

structure, where the method achieved a native sequence

recapitulation rate of 30.7% [61]. SPIN was later

extended to SPIN2, which added an additional hidden

layer and extra local/nonlocal features, thereby obtaining

a native sequence recovery rate of 34.4% [62]. Using a

different approach, Anand et al. recently extracted fea-

tures around a local, voxelized environment for each

residue, which were then fed into a convolutional neural

network with six 3D convolutional layers [63]. The

authors found that their method was able to achieve

designs with greater sequence diversity than Rosetta.

In another study, Greener et al. utilized variational auto-

encoders to add metal binding sites to existing protein

sequences and to design new sequences conditioned on

the desired topology of a protein [64�]. This approach

removes the constraint of starting from a known protein

structure, directly allowing the generation of sequences

conditioned on the desired fold of a protein.

Most recently, Anishchenko et al. set out to answer the

question if the information stored in deep neural net-

works used to predict inter-residue distances and orienta-

tions could be applied to design new protein sequences

and structures [65��]. To address this, they used deep

network hallucination, where they performed Monte

Carlo sampling in sequence space, at each step feeding

the sequences into the trRosetta deep neural network

architecture in order to predict their distance maps and

comparing them against a background distance map dis-

tribution. Mutations were accepted or rejected based on

the Metropolis criterion, where the objective of the

simulations was to maximize the information gain (Kull-

back-Leibler divergence) between the predicted distance

maps and the background distribution. The method was

able to produce diverse sequences that adopted stable,

monomeric folds as assessed by circular dichroism. The

developed method was then extended in two additional

studies, where the procedure was either completely con-

strained to design sequences for a fixed fold [66] or to

design sequences that recapitulated native interfaces

[67], while allowing the remainder of the protein to be
Current Opinion in Structural Biology 2021, 68:194–207 
hallucinated freely. The ability to constrain the design

simulation to recapitulate native structural motifs is par-

ticularly impactful when considering functional inhibitor

design, where the native interface from a known binder

could be incorporated into the hallucinated proteins.

However, the ability to freely hallucinate interfaces that

can bind to therapeutic targets would remove such lim-

itations and would address a long-standing problem in the

field which is generating high affinity binders to arbitrary

protein targets. Nevertheless, these studies demonstrate

that it is possible to utilize the information stored in the

deep neural networks used for protein structure predic-

tion to design new protein sequences and structures.

Conclusion and future directions
The prediction of protein structures from amino acid

sequences alone has remained an outstanding problem

in structural biology since Anfisen first demonstrated that

the information encoded in a protein sequence determines

its structure more than 60 years ago. Now more than ever,

there is an urgent need to develop high accuracy

protein structure prediction methods, as advancements

in high-throughput sequencing technology have greatly

exacerbated the gap between the number of known

sequences and the number of experimentally determined

protein structures. For some time since the development of

profile-based threading methods and fragment assembly

approaches, progress in the field has remained slow and

only incremental gains have been achieved. Nevertheless,

recent advancements in co-evolution-based contact map

prediction and especially the more recent deep learning-

based spatial restraint prediction and end-to-end model

training have revolutionized the field of protein structure

prediction, greatly improving its accuracy and the ability to

fold proteins, in particular those that lack homologous

templates in the PDB.

The success of inter-residue contact-guided and distance-

guided folding approaches raises the question of what

other constraints can be predicted using deep learning

and incorporated into structure assembly simulations.

The most recent studies demonstrated that prediction

of inter-residue torsional angles [20��] and hydrogen-

bonding networks [34] may represent a future direction

of the field, where the use of other restraints should also

be investigated. In addition to specific spatial feature

prediction, the AlphaFold2 team [35��] demonstrated

that an end-to-end training system powered by atten-

tion-based neural networks could self-learn the feature

derivation process and refine models based on the esti-

mated local structure errors. They generated models with

a TM-score above 0.5 for all domains (except for one

whose structure was solved by NMR) in the CASP14

experiment, marking the solution of the single-domain

protein structure prediction problem at a fold level [68].

Nevertheless, protein structure prediction is multifaced,

including single-domain, multi-domain and quaternary
www.sciencedirect.com
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complex structure modeling, the latter two of which were

not assessed in CASP14. Even for single-domain

structures, there were nearly 1/3 of cases, for which the

AlphaFold2 models were below the level of experimental

accuracy. Given that most proteins perform their

functions through interaction with other domains and

chain partners in cells and that function annotation and

drug discovery studies often requires atomic resolution

models, all these problems must be carefully addressed

before the convincing claim of a complete solution to the

protein structure prediction problem can be made.

Another important dilemma raised by the successful

use of deep learning is the difficulty in understanding

what information is being learned by such approaches.

Traditional energy force fields used for protein folding are

easily interpretable as they include explicit terms that

account for various physically important constraints

that guide protein folding. However, deep learning is

essentially a black box that does not provide any easily

interpretable information on the physical principles that

underlie protein folding. Thus, the ability to fold proteins

based on first principles or physical principles, which is

essential to understand the dynamics of protein folding,

remains elusive. Nevertheless, while there certainly are

many challenges in the field, the progress witnessed

within the past few years provides hope that one of

the most difficult and meaningful biological problems,

predicting structures of proteins at their equilibrium state

starting from the amino acid sequences alone, could

be solved through the use of deep learning within the

foreseeable future.

As the reverse procedure of ab initio folding, protein

design has by far witnessed much less involvement of

deep machine learning models. Given that the same

physical principle governs both procedures, one can

expect that more accurately modeled sequence and struc-

ture relationships obtained from deep neural network

learning should help increase the accuracy and success

rate of de novo protein design. Indeed, the use of deep

network hallucination confirmed that it is possible to use

the information stored in neural networks utilized for

protein structure prediction to design novel protein

sequences and structures. The extension of such net-

works to functional protein design should have dramatic

implications as current de novo design approaches require

users to pre-specify the length and composition of

secondary structure elements. The ability to allow deep

learning to select the most favorable composition of the

designed scaffolds for a particular application would

simplify the design process and allow for a more compre-

hensive exploration of viable solutions. Nevertheless, one

drawback to such approaches is that most of the sophisti-

cated deep learning models in structural bioinformatics

are trained on MSAs, where the MSA construction often

involves lengthy and time-consuming genome database
www.sciencedirect.com 
searching. This may render it infeasible to incorporate

these deep learning models with extensive sequence

design simulations because each step of the sequence

design iterations generates a new sequence and,

therefore, requires new MSA construction and model

training. In this regard, development of accurate and

single sequence-based deep learning models might be

important to overcome this barrier, which has in fact

been demonstrated through the use of transformer neural

networks by AlphaFold2. Overall, the integration of

advanced deep learning algorithms with traditional struc-

tural folding approaches represents an exciting future

avenue for both protein structure prediction and protein

design and should continue to enable the next wave of

innovation in both fields.
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