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Biomolecular Simulations

● Molecular Mechanics force fields 

● Energy Minimization 

● Molecular dynamics 

● Monte Carlo methods



Biomolecular Simulations



The two major assumptions in molecular simulations

1. Born-Oppenheimer approximation 

“the dynamics of electrons is so fast that they can be  
considered to react instantaneously to the motion of  
their nuclei” 

2. Classical mechanics  

“The nuclei are treated as point particles that follow  
the classical laws of mechanics.”



What is an atom?

● Classical mechanics: a point particle 

● Defined by its position (x,y,z) and its mass 

● May carry an electric charge (positive or negative), 
usually partial (less than an electron)



Atomic interactions

Torsion angles 
Are 4-body

Angles 
Are 3-body Bonds 

Are 2-body

Non-bonded 
pair



Strong valence energies

2
0 )( bbKU −=

2
0 )( θθ −= KU

))cos(1( φnKU −=

b

θ

φ

All chemical bonds

Angle between chemical bonds

Preferred conformations for 
torsion angles: 
    - ω angle of the main chain 
    - χ angles of the sidechains 
 (aromatic, …)

Atomic interactions



vdW interactions
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Torsion angles 
Are 4-body

Angles 
Are 3-body

Bonds 
Are 2-body

Non-bonded 
pair

( )

( )

( )[ ]

∑

∑

∑

∑

∑

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−+

−+

−=

nonbondedji i j

ji

nonbondedji i j

i j

i j

i j
i j

torsionsall

anglesall

bondsall
b

r
qq

r
R

r
R

nK

K

bbKU

, 0

,

612

2
0

2
0

4

2

cos1

2
1

2
1

επε

ε

φ

θθ

φ

θ

Computing energy



Solvent 
 

Explicit          or           Implicit ?
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The SA model

Surface area potential
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Eisenberg and McLachlan, (1986) Nature, 319, 199-203 



Hydrophobic potential: Surface Area, or Volume?

(Adapted from Lum, Chandler, Weeks,  
J. Phys. Chem. B, 1999, 103, 4570.)

“Radius of the molecule”

Volume effect

Surface effect

For proteins and other large bio-molecules, use surface



Sphere Representations in Biology

DNA

Nucleosome

Viral DNA

Chromosome arrangements



Measuring a Union of Balls



Measuring a Union of Balls



Measuring a Union of Balls
Algorithm for computing  
Delaunay  triangulation: 

Input: N: number of points 
      Ci: position of point I 

1)Randomize points 

2) For i = 1:N 
 - Location: find tetrehedra 
                                    that contains Ci 
 - Addition: Divide t into 4 
                                    tetrahedra 
 - Correct: flip non local tetrahedra 

Output: list of tetrahedra



Measuring a Union of Balls

Compute Voronoi diagram from 

Delaaunay complex: dual



Measuring a Union of Balls

Restrict Voronoi diagram to 

the Union of Balls: 

Power diagram



Measuring a Union of Balls
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Measuring a Union of Balls

Protein Delaunay Complex

K complex

Pocket



Measuring Union of Balls

Cavity

Pocket



Applications to drug design

HIV protease (3MXE) Main cavity Actual position of K54
(inhibitor)



PDB structure: 1HZN

Hygromycin B

BINDING POCKETS IN 16S RIBOSOMAL RNA



Probe Size

1.4 Å

8 Å

BINDING POCKETS IN 16S RIBOSOMAL RNA
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The direct computation of the non bonded interactions involve all pairs of  
atoms and has a quadratic complexity (O(N2)). 
This can be prohibitive for large molecules.

Bonded interactions are local, and therefore their computation has a linear 
computational complexity (O(N), where N is the number of atoms in the  
molecule considered.

Computing energy
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Cutoff schemes for faster energy computation

ωij : weights (0< ωij <1). Can be used to exclude bonded terms,  

 or to scale some interactions (usually 1-4)

S(r) : cutoff function. 

Three types: 

 1) Truncation:
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2. Switching
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Cutoff schemes for faster energy computation



Most force fields use the AKMA (Angstrom – Kcal – Mol – Atomic Mass Unit) 
unit 
system:

Quantity AKMA unit Equivalent SI

Energy 1 Kcal/Mol 4184 Joules

Length 1 Angstrom 10-10 meter

Mass 1 amu 
(H=1amu) 1.6605655 10-27 Kg 

Charge 1 e 1.6021892 10-19 C 

Time 1 unit 4.88882 10-14 
second

Frequency 1 cm-1 18.836 1010 rd/s

Units in Molecular Simulations



Some Common force fields in Computational 
Biology

ENCAD (Michael Levitt, Stanford) 

AMBER (Peter Kollman, UCSF; David Case, Scripps) 

CHARMM (Martin Karplus, Harvard) 

OPLS (Bill Jorgensen, Yale) 

MM2/MM3/MM4 (Norman Allinger, U. Georgia) 

ECEPP (Harold Scheraga, Cornell) 

GROMOS (Van Gunsteren, ETH, Zurich) 

Michael Levitt. The birth of computational structural biology. Nature Structural Biology, 8, 392-393 
(2001)



Biomolecular Simulations



Torsion angles 
Are 4-body

Angles 
Are 3-body

Bonds 
Are 2-body

Non-bonded 
pair
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Computing energy

U is a function of the conformation C of the protein.  
The problem of  “minimizing U” can be stated as finding C  
such that U(C) is minimum.



The minimizers

Minimization of a multi-variable function is usually an iterative 
process, in which 
updates of the state variable x are computed using the gradient, 
and in some 
(favorable) cases the Hessian. 

Iterations are stopped either when the maximum number of steps 
(user’s input) 
is reached, or when the gradient norm is below a given threshold.



Steepest descent (SD): 

The simplest iteration scheme consists of following the “steepest 
descent” direction: 

Usually, SD methods leads to improvement quickly, but then exhibit 
slow progress toward a solution. 
  
They are commonly recommended for initial minimization iterations, 
when the starting function and gradient-norm values are very large. 
 

)(1 kkk xfxx ∇−=+ α
(α sets the minimum 
 along the line defined 
 by the gradient)



Conjugate gradients (CG): 

In each step of conjugate gradient methods, a search vector pk is 
defined by a recursive formula: 

The corresponding new position is found by line minimization along pk: 

the CG methods differ in their definition of β. 
  

( ) kkkk pxfp 11 ++ +−∇= β

kkkk pxx λ+=+1

The minimizers



Newton’s methods: 

Newton’s method is a popular iterative method for finding the 0 of a  
one-dimensional function:
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Several implementations of Newton’s method exist: quasi-Newton,  
truncated Newton, “adopted-basis Newton-Raphson” (ABNR),…

It can be adapted to the minimization of a one –dimensional function, in 
which 
case the iteration formula is: ( )
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The minimizers



Biomolecular Simulations



What is a molecular dynamics simulation?

• Simulation that shows how the atoms in the system 
move with time 

• Typically on the nanosecond timescale 

• Atoms are treated like hard balls, and their motions are 
described by Newton’s laws.



Characteristic protein motions

Type of 
motion Timescale Amplitude

Local: 
    bond stretching 
    angle bending 
    methyl rotation

0.01 ps 
0.1 ps 
1 ps

< 1 Å

Medium scale 
   loop motions 

   SSE formation ns – µs 1-5 Å

Global 
   protein tumbling 

   (water 
tumbling) 

   protein folding

20 ns 
(20 ps) 

ms – hrs

> 5 Å

Periodic (harmonic)

Random (stochastic)



Why MD simulations?

● Link physics, chemistry and biology 

● Model phenomena that cannot be observed experimentally 

● Understand protein folding… 

● Access to thermodynamics quantities (free energies, binding 
energies,…)



How do we run a MD simulation?

●Get the initial configuration  

From x-ray crystallography or NMR spectroscopy (PDB) 

●Assign initial velocities 
  
 At thermal equilibrium, the expected value of the kinetic energy 

of the system at temperature T is: 

  
  
This can be obtained by assigning the velocity components vi from 

a random Gaussian distribution with mean 0 and standard 
deviation (kBT/mi): 
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For each time step: 

  Compute the force on each atom: 

  
  Solve Newton’s 2nd law of motion for each atom,  
  to get new coordinates and velocities 

  Store coordinates 

Stop

X
EXEXF
∂
∂

−=−∇= )()(

)(XFXM =
••

X: cartesian vector 
    of the system

M diagonal mass matrix 
.. means second order 
   differentiation with 
   respect to time

Newton’s equation cannot be solved analytically: 
            Use stepwise numerical integration

How do we run a MD simulation?



MD as a tool for minimization

Energy

position

Energy minimization 
stops at local minima

Molecular dynamics 
uses thermal energy 
to explore the energy 
surface

State A

State B



Crossing energy barriers

A

B

I

ΔG

Position

E
n

e
rg

y

time

P
o

si
ti

o
n

State A

State B

The actual transition time from A to B is very quick (a few pico seconds). 

What takes time is waiting. The average waiting time for going from A to B  
can be expressed as:
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Biomolecular Simulations



Monte Carlo: random sampling

A simple example: 
Evaluate numerically the one-dimensional integral: 

Instead of using classical quadrature, the integral can be rewritten as
∫=
b

a
dxxfI )(

)()( xfabI −=
<f(x)> denotes the unweighted average of f(x) over [a,b], and can be 
 determined by evaluating f(x) at a large number of x values randomly 
 distributed over [a,b]

Monte Carlo method!



A famous example: Buffon’s needle problem
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The probability that a needle of length 
L overlaps with one of the lines, distant 
from each other by D, with L≤D is:

For L = D

Buffon, G. Editor's note concerning a lecture given by Mr. Le Clerc de Buffon to the Royal Academy of  
Sciences in Paris.  Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733. 
Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4,  
46-123, 1777

Method to estimate π numerically: 
“Throw” N needles on the floor, find needles that cross one of the line  
(say C of them). An estimate of π is:



Monte Carlo Sampling for protein structure
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The probability of finding a protein (biomolecule) with a total energy  
E(X) is:

Partition function

Estimates of any average quantity of the form:

using uniform sampling would therefore be extremely inefficient.

Metropolis and coll. developed a method for directly sampling  
according to the actual distribution.

Metropolis et al. Equation of state calculations by fast computing machines. J. Chem. Phys. 
21:1087-1092 (1953)



Monte Carlo for sampling conformations
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The Metropolis Monte Carlo algorithm: 

1.  Select a conformation X at random. Compute its energy E(X) 

2.  Generate a new trial conformation Y. Compute its energy E(Y) 

3.  Accept the move from X to Y with probability: 

4.  Repeat 2 and 3.

Pick a random number 
RN, uniform in [0,1]. 
If RN < P, accept the 
move.


