

Biomolecular Simulations

- Molecular Mechanics force fields
- Energy Minimization
- Molecular dynamics
- Monte Carlo methods

Biomolecular Simulations

- Molecular Mechanics force fields
- Energy Minimization
- Molecular dynamics
- Monte Carlo methods

The two major assumptions in molecular simulations

1. Born-Oppenheimer approximation
"the dynamics of electrons is so fast that they can be considered to react instantaneously to the motion of their nuclei"
2. Classical mechanics
"The nuclei are treated as point particles that follow the classical laws of mechanics."

What is an atom?

- Classical mechanics: a point particle
- Defined by its position ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and its mass
- May carry an electric charge (positive or negative), usually partial (less than an electron)

Hydrophobic potential: Surface Area, or Volume?

For proteins and other large bio-molecules, use syrface

Sphere Representatioms in Biology

DNA

Measuring a Union of Balls

Measuring a Union of Balls

Measuring a Union of Balls
Algorithm for computing
Delaunay triangulation:
Input: N : number of points
Ci: position of point I
1)Randomize points
2) For $i=1: N$

- Location: find tetrehedra
that contains C
-Addition: Divide t into 4
- Correct: flip non local tetrahedra

Output: list of tetrahedra

Measuring a Union of Balls

Compute Voronoi diagram from
Delaaunay complex: dual

Measuring a Union of Balls

Restrict Voronoi diagram to
the Union of Balls:
Power diagram

Measuring a Union of Balls

Atom i:
Fraction in Voronoi cell:
σ_{i} and β_{i}
$A_{i}=4 \pi \sum_{i=1}^{N} r_{i}^{2} \sigma_{i}$
$V_{i}=\frac{4 \pi}{3} \sum_{i=1}^{N} r_{i}^{3} \beta_{i}$

Measuring a Union of Balls

(1)
K complex

Measuring Union of Balls

Applications to drug design

BINDING POCKETS IM 16S RIBOSOMAL RRA

PDB structure: 1 HZN

Computing energy

Bonded interactions are local, and therefore their computation has a linear computational complexity $(\mathrm{O}(\mathrm{N})$, where N is the number of atoms in the molecule considered.

The direct computation of the non bonded interactions involve all pairs of atoms and has a quadratic complexity $(\mathrm{O}(\mathrm{N} 2)$)
This can be prohibitive for large molecules.
$U_{N B}=\sum_{i, j \text { nonbonded }} \varepsilon_{i j}\left[\left(\frac{R_{i j}}{r_{i j}}\right)^{12}-2\left(\frac{R_{i j}}{r_{i j}}\right)^{6}\right]+\sum_{i, j \text { nonbonded }} \frac{q_{i} q_{j}}{4 \pi \varepsilon_{0} \varepsilon r_{i j}}$

Cutoff schemes for faster energy computation

$$
U_{N B}=\sum_{i, j} \omega_{i j} S\left(r_{i j}\right) \varepsilon_{i j}\left[\left(\frac{R_{i j}}{r_{i j}}\right)^{12}-2\left(\frac{R_{i j}}{r_{i j}}\right)^{6}\right]+\sum_{i, j} \omega_{i j} S\left(r_{i j}\right) \frac{q_{i} q_{j}}{4 \pi \varepsilon_{0} \varepsilon r_{i j}}
$$

- $\omega_{i j}$: weights $\left(0<\omega_{i j}<l\right)$. Can be used to exclude bonded terms,
or to scale some interactions (usually 1-4)
- S (r) : cutofffunction

Three types:

1) Truncation:

Cutoff schemes for faster energy computation
2. Switching $r<a$

3. Shifting
$S(r)=\left[1-\left(\frac{r}{b}\right)^{2}\right]^{2} \quad r \leq b$
or
$S_{2}(r)=\left[1-\frac{r}{b}\right]^{2} \quad r \leq b$

Some Common force fields in Computational Biology

ENCAD (Michael Levilt, Stanford)
AMBER (Peter Kollman, UCSF; David Case, Scripps)
CHARMM (Martin Karplus, Harvard)
OPLS (Bill Jorgensen, Yale)
MM2/MM3/MM4 (Norman Allinger, U. Georgia)
ECEPP (Harold Scheraga, Cornell)
GROMOS (Van Gunsteren, ETH, Zurich)
Michael L Levitt. The birth of computational structural biology. Nature Structural Biology, 8,3 . 2 2001)
(201)

Biomolecular Simulations

- Molecular Mechanics force fields
- Energy Minimization
- Molecular dynamics
- Monte Carlo methods

\boldsymbol{U} is a function of the conformation C of the protein.
The problem of "minimizing U " can be stated as finding C The problem of iminimizing
such that $U(C)$ is minimum.

The minimizers

Minimization of a multi-variable function is usually an iterative process, in which
updates of the state variable x are computed using the gradient, and in some
(favorable) cases the Hessian.
(user's input)
is reached, or when the gradient norm is below a given threshold.

Steepest descent (SD)
The simplest iteration scheme consists of following the "steepest descent" direction:

$$
x_{k+1}=X_{k}-\alpha \nabla f\left(X_{k}\right) \quad \begin{aligned}
& \text { a sets the minimum } \\
& \text { along the line defined } \\
& \text { by the gradient }
\end{aligned}
$$

Usually, SD methods leads to improvement quickly, but then exhibit slow progress toward a solution

They are commonly recommended for initial minimization iterations, when the starting function and gradient-norm values are very large.

Conjugate gradients (CG):

In each step of conjugate gradient methods, a search vector p_{k} is defined by a recursive formula:

$$
p_{k+1}=-\nabla f\left(x_{k}\right)+\beta_{k+1} p_{k}
$$

The corresponding new position is found by line minimization along p_{k} :

$$
x_{k+1}=x_{k}+\lambda_{k} p_{k}
$$

the CG methods differ in their definition of β,

Newton's methods:

Newton's method is a popular iterative method for finding the 0 of one-dimensional function:

It can be adapted to the minimization of a one -dimensional function, in
which
case the iteration formula is: $x_{k+1}=x_{k}-\frac{g^{\prime}\left(x_{k}\right)}{g^{\prime \prime}\left(x_{k}\right)}$
Several implementations of Newton's method exist: quasi-Newton
truncated Newton, "adopted-basis Newton-Raphson" (ABNR),.

Biomolecular Simulations

- Molecular Mechanics force fields
- Energy Minimization
- Molecular dynamics
- Monte Carlo methods

What is a molecular dynamics simulation?

- Simulation that shows how the atoms in the system move with time
- Typically on the nanosecond timescale
- Atoms are treated like hard balls, and their motions are described by Newton's laws.

Characteristic protein motions

Type of motion	Timescale	Amplitude	
Local: bond stretching angle bending methyl rotation	$\begin{gathered} 0.01 \mathrm{ps} \\ 0.1 \mathrm{ps} \\ 1 \mathrm{ps} \end{gathered}$	$<1 \AA$	
loop motions SSE formation	ns - $\mu \mathrm{s}$	1-5 \&	
Global protein tumbling (water tumbling) protein folding	$\begin{gathered} 20 \mathrm{~ns} \\ (20 \mathrm{ps}) \\ \mathrm{ms}-\mathrm{hrs} \end{gathered}$	$>5 \AA$	Random (stochastic)

Why MD simulations?

- Link physics, chemistry and biology
- Model phenomena that cannot be observed experimentally
- Understand protein folding...
- Access to thermodynamics quantities (free energies, binding energies,...)

How do we run a MD simulation?

- Get the initial configuration

From x-ray crystallography or NMR spectroscopy (PDB)

- Assign initial velocities

At thermal equilibrium, the expected value of the kinetic energy

$$
\left\langle E_{k i n}\right\rangle=\frac{1}{2} \sum_{i=1}^{3 N} m_{i} v_{i}^{2}=\frac{1}{2}(3 N) k_{B} T
$$

This can be obtained by assigning the velocity components vi from a random obtaussian by assigning the velocitity components
a con with mean 0 and standard

$$
\left\langle v_{i}^{2}\right\rangle=\frac{k_{B} T}{m_{i}}
$$

How do we run a MD simulation?

- For each time step:
- Compute the force on each atom: X : cartesian vector $F(X)=-\nabla E(X)=-\frac{\partial E}{\partial X} \quad$ of the system

Solve Newton's $2^{\text {nd }}$ law of motion for each atom to get new coordinates and velocities
$M \ddot{X}=F(X) \quad \begin{aligned} & M \text { diagonal mass matrix } \\ & . . \\ & \text { means second order }\end{aligned}$ differentiation with

- Stop

Newton's equation cannot be solved analytically \longrightarrow Use stepwise numerical integration

Biomolecular Simulations

- Molecular Mechanics force fields
- Energy Minimization
- Molecular dynamics
- Monte Carlo methods

Monte Carlo: random sampling

A simple example
Evaluate numerically the one-dimensional integral:

$$
I=\int_{a}^{b} f(x) d x
$$

Instead of using classical quadrature, the integral can be rewritten as

$$
I=(b-a)\langle f(x)\rangle
$$

$<f(x)>$ denotes the unweighted average of $f(x)$ over $[a, b]$, and can be
determined by evaluating $f(x)$ at a large number of xalues randomly distributed over $[a, b]$

A famous example: Buffon's needle problem

For $L=D \quad$| The probability that a needle of length |
| :--- |
| Loverlaps with one of the lines, distant |
| from each other by D, with $L \leq D$ is: |

"Throw" N needles on the floor, find needles that cross one of the line
(say C of them). An estimate of π is:

$$
\pi=2 \frac{N}{C}
$$

Monte Carlo Sampling for protein structure

The probability of finding a protein (biomolecule) with a total energy
$E(X)$ is: The pro
$\mathrm{E}(\mathrm{X})$ is:

$$
P(X)=\frac{\exp \left(-\frac{E(X)}{k T}\right)}{\int \exp \left(-\frac{E(Z)}{k T}\right) d Z} \longrightarrow \text { Partition function }
$$

Estimates of any average quantity of the form:
$\langle A\rangle=\int A(X) P(X) d X$
using uniform sampling would therefore be extremely inefficient.
\longrightarrow Metropolis and coll. developed a method for directly sampling according to the actual distribution.
$\begin{aligned} & \text { Metropolis et al. Equation of state calculations by fast computing machines. J. Chem. Phys. } \\ & \text { 21:1087-1092 (1953) }\end{aligned}$

Monte Carlo for sampling conformations

The Metropolis Monte Carlo algorithm:

1. Select a conformation X at random. Compute its energy $\mathrm{E}(\mathrm{X})$
2. Generate a new trial conformation Y. Compute its energy $E(Y)$
3. Accept the move from X to Y with probability :
$P=\min \left(1, \exp \left(-\frac{E_{p}(Y)-E_{p}(X)}{k T}\right)\right.$
Pick a random number
Pick a random number
$R N$, uniform in $[0,1]$. If $R N$ < P, accept the
4. Repeat 2 and 3 move.
