Name:_____ ID : _____

A) 10
B) 18
C) 8
D) 6
E) 0

ECS 129: Structural Bioinformatics

March 19, 2018

Notes:

- 1) The final exam is open book, open notes.
- 2) The final is divided into 3 parts, and graded over 100 points, with 8 possible extra credit points (part III)
- 3) You can answer directly on these sheets (preferred), or on loose paper.
- 4) Please write your name at least on the front page!
- 5) Please, check your work! If possible, show your work when multiple steps are involved.

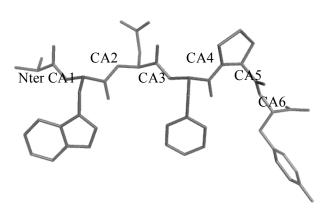
Part I (15 questions, each 4 points; total 60 points)

(These questions are multiple choices; in each case, find the most **plausible** answer)

1) How many possible alignments of length M, with no gaps, can you form when you compare two sequences of length N and M, with N > M?

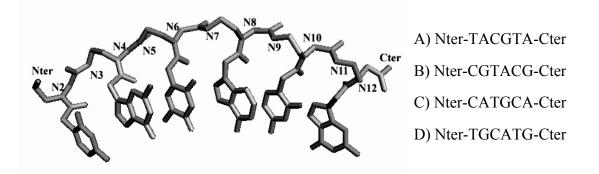
A) 1
B) N-M
C) N-M+1
D) M
E) N

2) In the dynamic programming matrix below, what is the score in the cell identified with an interrogation mark (?). Assume that the score for a perfect match is set to 10, the score of a mismatch is set to 0, and gap penalties are set to -2, independent of length

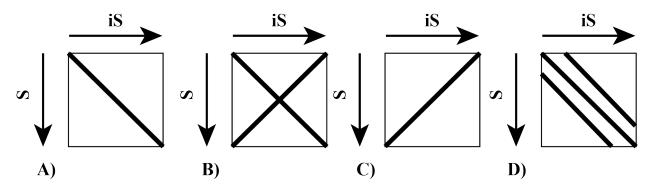

	G	Y	W	W	C	A
W	0	-2	8	8	-2	-2
W	-2	0	8	18	8	6
С	-2	-2	0	?		

3) The Ramachandran plot:

- A) Compares the conformation of the side-chains of a protein.
- B) Shows the accessibility of all amino acids in a protein
- C) Shows the relationship between the torsion angles ϕ and ψ , for each amino acid in the protein
- D) Shows the torsion angle around the peptide bond, for each amino acid in the protein
- E) Shows the number of hydrogen bonds that stabilize a protein

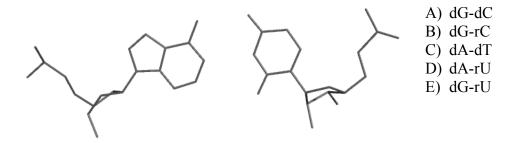

Name:_			
ID :	 	 	

4) The figure below shows a small peptide of six amino acids; give its sequence: (hint: there is one charged amino acid at physiological pH – from pH 5.5 to pH 8.0; hydrogens are not shown)



A) AWEFGFB) AWDFPYC) AYDYPWD) AWNFPY

5) Peptide Nucleic Acids, or PNAs, are synthetic oligomers with a protein backbone on which bases (purines and pyrimidines) are linked every second N. Unlike DNA, PNAs do not contain sugars or phosphate groups. PNAs are represented as proteins, from Nter to Cter. Find the "sequence" from Nter to Cter of the PNA shown below:



6) Given two DNA sequences S and iS that are each other's inverse (for example 5'-GATCAT-3' and 5'-TACTAG-3'), what does their dotplot look like?

Name:			
ID :			

7) The figure below shows a nucleotide base pair; identify it (note that dX indicates a deoxyribonucleotide, as contained in a DNA molecule, while rX refers to a ribonucleotide, as found in an RNA molecule).

8) Cytochrome P450 enzymes form a super-family of haem-containing oxygenases that are found in all kingdoms of life. These proteins have very similar structures but show extraordinary diversity in their reaction chemistry. Let us consider these three examples: (A) the human CYP46A1, an enzyme that controls cholesterol turnover in the brain, (B), a human prostacyclin synthase (prostacyclin is a small lipid that inhibits platelet aggregation), and (C), Xpla, a cytochrome P450 from rhodococcus (aerobic bacterium) that has been found to break down explosive pollutants. (A), (B) and (C) are homologous proteins; what else can you say?

- A) (A), (B) and (C) are orthologous
- B) (A), (B) and (C) are paralogous
- C) (A) and (B) are paralogous, while (A) and (C) are orthologous
- D) (A) and (B) are orthologous, while (A) and (C) are paralogous
- E) (B) and (C) are paralogous, while (A) and (B) are orthologous

9) We want to find the best alignment(s) between the protein sequences WWYCTY and WCYTY. The scoring scheme S is defined as follows: S(i,i) = 10, S(i,j) = 5 if i and j are both aromatic amino acids, and S(i,j) = 0 otherwise. There is a constant gap penalty of 5 (gaps at the beginning are considered, see below). The score Sbest and the number N of optimal alignments are (show your final dynamic programming matrix for full credit):

	W	W	Y	С	Т	Y
W	10	5	0	-5	-5	0
С	-5					
Y	0					
Т	-5					
Y	0					

A) Sbest = 40, N = 1 B) Sbest = 35, N = 2 C) Sbest = 35, N = 1 D) Sbest = 40, N = 2 E) Sbest = 30, N = 1

Name:			
ID :	 	 	

10) How many DNA coding sequences (where a coding sequence includes the START and STOP codon, but no introns) could lead to the following protein sequence:

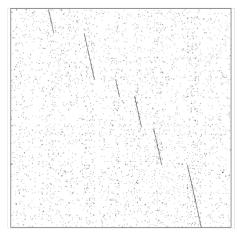
Met-Lys-Ser-Trp-Leu-Phe-Trp-Ala, assuming the standard genetic code?

- A) 1
- B) 576
- C) 1152
- D) 1728
- E) 4096

11) Which combination of program / substitution matrix will most likely give you the best alignment between two sequences that are highly similar?

- A) BLAST / Blosum45
- B) Dynamic programming / Blosum45
- C) BLAST / Blosum90
- D) Dynamic programming / Blosum90
- E) BLAST / Blosum10

12) A BLAST search is most useful when you want to do the following:


- A) Find inverted repeats within a protein sequence
- B) Generate the best possible alignment between the target and template sequences to be used as input for homology modeling
- C) Find a rat paralog to a human gene
- D) Find a rice ortholog to a yeast gene
- E) Predict the secondary structures of a protein

13) We want to find the best alignment(s) between the protein sequences FAFWC and FWFC. The scoring scheme S is defined as follows: S(i,i) = P, and S(i,j) = M otherwise. There is a constant gap penalty of G (gaps at the beginning are considered). The dynamic programming matrix is shown below. What were the values of P, M, and G:

	F	А	F	W	С
F	5	-4	3	-4	-4
W	-4	3	1	8	1
F	3	1	8	-1	6
С	-4	1	-1	6	11

Name:			
ID :			

14) The dotplot shown below compares the DNA sequence of the actin muscle gene from Pisaster ochraceus (horizontal) with the RNA corresponding to the same gene (vertical). The six regions of high similarity that shows as black lines correspond to:

A) IntronsB) RepeatsC) Inverted repeatsD) ExonsE) All of the above

15) When we compare the sequences of proteins that belong to the same family, we observe that some regions in the sequences are more conserved than others (see for example Figure 1 below).

Protein 1 🗲	-48	An 19-2-9-19	R.	www.		73	} +->
Protein 3 🎸	-1	61-01/0/	R			7 3	₩- >
Protein 4 🎸	- 13	Manana Ada	26	in the second	6440	Y	} +->

Figure: Residues conserved among various G protein coupled receptors are highlighted in horizontal gray bars (from http://en.wikipedia.org/wiki/Conserved_sequence).

The presence of such conserved regions is (choose the most likely answer):

- A) irrelevant: conserved residues are only found at the beginning and end of protein sequences and do not play a role in function.
- B) relevant: conserved residues are usually essential for the structure and the function of the protein.
- C) irrelevant: the function of a protein is not defined by its sequence (function is only defined by structure)..
- D) irrelevant: residue conservation is merely an indirect consequence of the degeneracy and non uniformity of the genetic code, i.e. some residue types are associated with more codons and are therefore less sensitive to mutations at the DNA level.

Name:			
ID :		 	

Part II (2 problems; total 40 points)

Problem 1 (4 questions, each 5 points: total 20)

Concanavalin A (ConA) is a lectin (carbohydrate-binding protein) originally extracted from the jack bean, *Canavalia ensiformis*. It binds specifically to certain sugars, glycoproteins, and glycolipids. The structure of concanavilin has been determined by X-ray crystallography, and is stored in the PDB. You are interested to know how similar this lectin is from the other lectins that are known, in particular to the lectin from peanut, whose structure is also known. First, you run BLAST, starting from the sequence of ConA. BLAST does find a match with the peanut lectin:

```
> pdb 2PEL A S Chain A, Peanut Lectin
 pdb 2PEL B S Chain B, Peanut Lectin
 pdb|2PEL|C S Chain C, Peanut Lectin

>61 more sequence titles
 Length=236
 Score = 91.3 bits (225), Expect = 3e-22, Method: Compositional matrix adjust.
Identities = 53/116 (46%), Positives = 67/116 (58%), Gaps = 1/116 (1%)
              ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAKWNMODGKVGTAHIIYNSVDKR
                                                                                       60
Ouerv 1
                  V VE DTY N++ DP H+GID+ SV S KT WN
                                                                 GV
                                                                         +TY+S K
              A
Sbjct 114 AGHFVGVEFDTYSNSEYNDPPTDHVGIDVNSVDSVKTVPWNSVSGAVVKVTVIYDSSTKT
                                                                                      173
             LSAVVSYPNADATSVSYDVDLNDVLPEWVRVGLSASTGL-YKETNTILSWSFTSKL
Ouerv 61
                                                                                  115
              LS V+ N D T+++ VDL LPE V+ G SAS L ++ + I SWSFTS L
Sbjct 174 LSVAVTNDNGDITTIAQVVDLKAKLPERVKFGFSASGSLGGRQIHLIRSWSFTSTL
                                                                                  229
Score = 76.3 bits (186), Expect = 1e-16, Method: Compositional matrix adjust. Identities = 44/106 (42%), Positives = 64/106 (60%), Gaps = 7/106 (7%)
Query 124 DALHFMFNQFSKDQKDLILQGDATTGTDGNLELTRVSSNGSPEGSSVGRALFYAPVHIWE 183
             + + F FN FS+ + QGD T ++GN++LT ++ + +SVGR L+ PV IW
ETVSFNFNSFSEGNPAINFQGDVTVLSNGNIQLTNLN----KVNSVGRVLYAMPVRIWS 56
Sbjct 2
Query 184 SSAATV-SFEATFAFLIKS-PDSHPADGIAFFISNIDSSIPSGSTG
                                                                      227
                   V SF +F+F +K D PADGI FFI+ D+ IP+GS G
              S+
Sbjct 57 SATGNVASFLTSFSFEMKDIKDYDPADGIIFFIAPEDTQIPAGSIG
                                                                      102
```

a) BLAST found two alignments between subsets of the sequences of ConA and the peanut lectin. Are these two alignments significant? Justify your answer

Name:			
ID :			

b) Based on these results from BLAST, draw schematically the dotplot between ConA and the peanut lectin. Only show the major correspondences between the two sequences

c) The two local alignments found by BLAST are 116 residues long and 106 residues long, respectively. Based on the specificity of these two alignments and the schematic dotplot you have drawn (from question b), explain why BLAST could not have found a single alignment of length at least 222.

d) From these results, do you expect the structures of ConA and peanut lectin to be similar? Justify your answer.

Name:_			
ID :	 	 	

Problem 2 (4 questions, each 5 points: total 20)

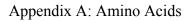
Below is the double-stranded DNA sequence of part of a hypothetical yeast genome, which happens to contain a very small gene.

- 3' GATATTTCTCGGTACGTACTTGATCTATTTTCCGAGACTCTTAAATAGAGATC- 5'
 - a) Which strand of DNA shown, the top or the bottom, is the template strand? Justify your answer
 - b) What is the mRNA sequence corresponding to the ORF for the gene?

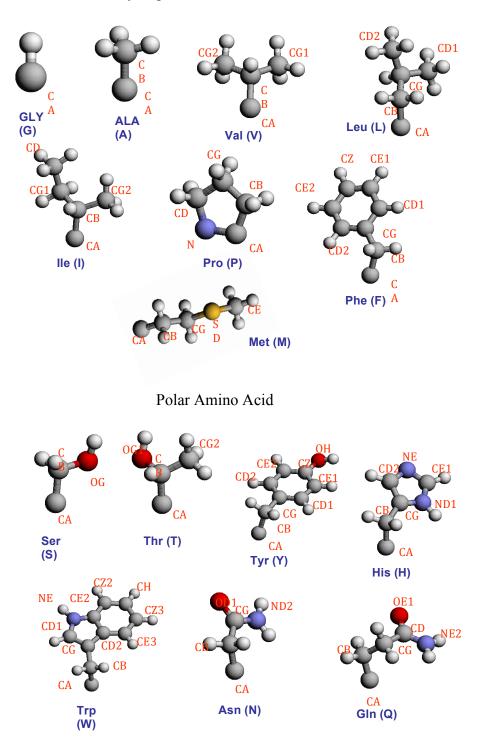
c) What is the sequence of the protein produced from the mRNA in (b)? Label the N and C termini.

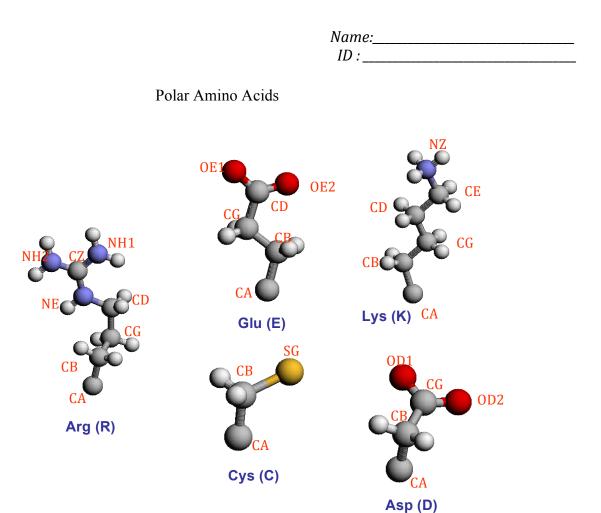
d) Predict the secondary structure of this protein using the Chou and Fasman method and the table provided in the Appendix. Justify your answer

Name:	 	 	
ID :			

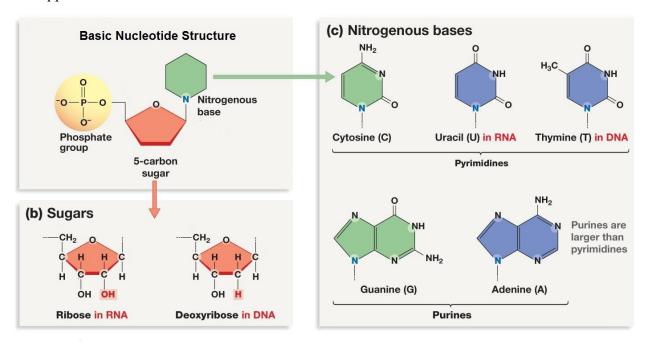

Part III (Extra credit; one problem, 8 points)

Below is the double-stranded DNA sequence of part of a hypothetical bacterial genome, which happens to contain a very small gene.


- - a) What is the sequence of the longest protein that can be produced by this DNA sequence? Label the N and C termini.


b) Propose a single base pair deletion that will lead to the mutated sequence still coding for a protein, albeit smaller, with the same START codon. Note that you still need a STOP codon in phase with the START codon. Give the sequence of the shorter protein. Label the N and C termini.

Name:_	 		
ID :	 	 	



Hydrophobic Amino Acids

Appendix B: Nucleotides

Name:_____ ID : _____

Appendix C: Genetic Code

	U	С	А	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
А	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	С
	Ile	Thr	Lys	Arg	Α
	Met/Start	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	А
	Val	Ala	Glu	Gly	G

Appendix D: Chou and Fassman Propensities

Amino Acid	Helix	Strand	Turn
Ala	1.29	0.90	0.78
Cys	1.11	0.74	0.80
Leu	1.30	1.02	0.59
Met	1.47	0.97	0.39
Glu	1.44	0.75	1.00
Gln	1.27	0.80	0.97
His	1.22	1.08	0.69
Lys	1.23	0.77	0.96
Val	0.91	1.49	0.47
Ile	0.97	1.45	0.51
Phe	1.07	1.32	0.58
Tyr	0.72	1.25	1.05
Trp	0.99	1.14	0.75
Thr	0.82	1.21	1.03
Gly	0.56	0.92	1.64
Ser	0.82	0.95	1.33
Asp	1.04	0.72	1.41
Asn	0.90	0.76	1.23
Pro	0.52	0.64	1.91
Arg	0.96	0.99	0.88