Name:			
ID :			

ECS 129: Structural Bioinformatics Midterm February 2, 2022

Notes:

- 1) The midterm is open book, open notes.
- 2) You have 45 minutes, no more: I will strictly enforce this.
- 3) The midterm is divided into 2 parts, and graded over 90 points.
- 4) You can answer directly on these sheets (preferred), or on loose paper.
- 5) Please write your name at the top right of each page you turn in!
- 6) Please, check your work! Show your work when multiple steps are involved.

Part I (6 questions, each 10 points; total 60 points)

(These questions are multiple choices; in each case, find the **most plausible** answer)

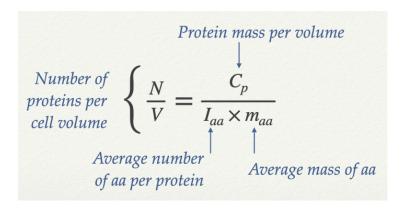
- 1) A specific codon for Leu can be converted to either Ser, Val, or Met by a single nucleotide substitution. What is this codon?
 - a) UUA
 - b) UUG
 - c) CUU
 - d) CUG
 - e) CUA
- 2) You are told that the DNA strand that codes for the small peptide Met Trp Tyr Trp Met contains exactly 40% of thymine. Can you find which codon is used for the Tyr amino acid in this peptide?
 - a) UAU
 - b) UAC
 - c) UGG
 - d) UAA
 - e) Not enough information
- 3) Only one of these DNA sequences can form a strand that can pair with itself to form a double stranded molecule. Which one?
 - a) 5'-AAAAAAAAA'3'
 - b)5'-AAAACCCC-3'
 - c)5'-ATATATATA-3'
 - d)5'-GCATCCGGATGC-3'
 - e)5'-ATATATGGATATAT-3'

Name:			
<i>ID</i> :			

- 4) Which of the following statements is true?
- a) DNA polymerase moves along the leading strand, reading it in the 3' to 5' direction
- b) The new strand of DNA generated by the DNA Polymerase for both the lagging and the leading strands is synthesized in the 5' to 3' direction
- c) The DNA polymerase needs to attach multiple times to the lagging strand, generating fragments that are subsequently attached together with a ligase
- d) A DNA polymerase is bound to make mistakes; error rates depend on the type of DNA polymerase, and differ in different species
- e) All of the above
- f) None of the above
- 5) Assume that the human genome contains 6 billion bases (i.e. 6 10⁹) and that it weighs 3.6 10⁻¹² grams. What would be the weight of a DNA molecule that would store the whole Encyclopedia Britannica, assuming that it contains 30 billion letters (i.e. 3 10 ¹⁰ letters) and that each letter needs to be stored over 3 bases?
- a) 5.4 grams
- b) 5.4 10³ grams
- c) 5.4 10⁻¹¹ grams
- d) 1.8 10⁻¹¹ grams
- e) $1.8 \ 10^3 \text{ grams}$
- 6) A single stranded DNA contains 15% Adenine, as many Guanines as Cytosines, and 40% of purines. What is the amount (in percent) of Thymine:
- a) 25%
- b) 35%
- c) 40%
- d) 15%
- e) Not enough information

	Name:
	ID :
Part II (two questions, 10 points each: to The following eukaryotic DNA sequence	
5'-GAGCCATGCATTATCTAGA	TAGTAGGCTCTGAGAATTTATCT-3'.
reading frame (ORF) correspondin	les for one gene. Find the longest "gene", or open g to this DNA sequence. Transcribe this ORF into an rresponding protein sequence (label the 5' and 3' ends is of the protein).

2) We consider the same DNA as in questions 1) above. A mutation is found where a T base **is added immediately** after the T base shown in bold (with a larger font)


 $5°-GAGCCATGCA \\ \mathbf{T}TATCTAGATAGTAGGCTCTGAGAATTTATCT-3°.$

What would be the resulting RNA and protein sequences?

Name:				
ID :				

Part III: (one question, 10 points)

We want to perform a simple "back of the envelope" calculation of the number of proteins within one cell of E-coli. We use for that the simple, rough equation:

With the following:

-
$$C_p = 0.2 \text{ g/ml}$$

$$I_{aa} = 300$$

-
$$m_{aa} = 100$$
 Daltons

-
$$I_{aa} = 300$$

- $m_{aa} = 100 \text{ Daltons}$
- 1 Dalton = 1.66 10⁻²⁷ kg

-
$$1 \text{ ml} = 10^{12} \, \mu\text{m}^3$$

Assuming that a bacterium has a volume of 1 µm³, how many proteins does this bacterium contain?

Name:			
ID:			

Appendix:

Appendix A: Genetic Code

	U	С	A	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	Α
	Met/Start	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G