
Computer Simulation of Molecular Dynamics: 
Methodology, Applications, and Perspectives in Chemistry 

By Wilfred E van Gunsteren * and Herman J. C. Berendsen * 

During recent decades it has become feasible to simulate the dynamics of molecular systems 
on a computer. The method of molecular dynamics (MD) solves Newton's equations of motion 
for a molecular system, which results in trajectories for all atoms in the system. From these 
atomic trajectories a variety of properties can be calculated. The aim of computer simulations 
of molecular systems is t o  compute macroscopic behavior from microscopic interactions. The 
main contributions a microscopic consideration can offer are ( 1 )  the understanding and 
(2) interpretation of experimental results, (3) semiquantitative estimates of experimental re- 
sults, and (4) the capability to  interpolate or extrapolate experimental data into regions that 
are only difficultly accessible in the laboratory. One of the two basic problems in the field of 
molecular modeling and simulation is how to efficiently search the vast configuration space 
which is spanned by all possible molecular conformations for the global low (free) energy 
regions which will be populated by a molecular system in thermal equilibrium. The other basic 
problem is the derivation of a sufficiently accurate interaction energy function or force field 
for the molecular system of interest. An important part of the art of computer simulation is 
to choose the unavoidable assumptions, approximations and simplifications of the molecular 
model and computational procedure such that their contributions to the overall inaccuracy are 
of comparable size, without affecting significantly the property of interest. Methodology and 
some practical applications of computer simulation in the field of (bio)chemistry will be 
reviewed. 

1. Introduction 

Computational chemistry is a branch of chemistry that 
enjoys a growing interest from experimental chemists. In this 
discipline chemical problems are resolved by computational 
methods. A model of the real world is constructed, both 
measurable and unmeasurable properties are computed, and 
the former are compared with experimentally determined 
properties. This comparison validates or invalidates the 
model that is used. In the former case the model may be used 
to study relationships between model parameters and as- 
sumptions or to predict unknown or unmeasurable quanti- 
ties. 

Since chemistry concerns the study of properties of sub- 
stances or molecular systems in terms of atoms, the basic 
challenge facing computational chemistry is to describe or 
even predict 
1. the structure and stability of a molecular system, 
2. the (free) energy of different states of a molecular system, 
3 .  reaction processes within molecular systems 
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in terms of interactions at  the atomic level. These three basic 
challenges are listed according to increasing difficulty. The 
first challenge concerns prediction of which state of a system 
has the lowest energy. The second challenge goes further; it 
involves prediction of the relative (free) energy of different 
states. The third challenge involves prediction of the dynam- 
ic process of change of states. 

Chemical systems are generally too inhomogeneous and 
complex to be treated by analytical theoretical methods. This 
is illustrated in Figure 1. The treatment of molecular systems 
in the gas phase by quantum mechanical methods is straight- 
forward; if a classical statistical mechanical approximation 
is permitted the problem becomes even trivial. This is due to 
the possibility of reducing the many-particle problem to a 
few-particle one based on the low density of a system in the 
gas phase. In the crystalline solid state, treatment by quan- 
tum mechanical or classical mechanical methods is made 
possible by a reduction of the many-particle problem to a 
few-(quasi)particle problem based on symmetry properties 
of the solid state. Between these two extremes, that is, for 
liquids, macromolecules, solutions, amorphous solids, etc., 
one is faced with an essentially many-particle system. No 
simple reduction to a few degrees of freedom is possible, and 
a full treatment of many degrees of freedom is required in 
order to adequately describe the properties of molecular sys- 
tems in the fluid-like state. This state of affairs has two direct 
consequences when treating fluid-like systems. 

1. One has to  resort to  numerical simulation of the behavior 
of the molecular system on a computer, which 

2. produces a statistical ensemble of configurations repre- 
senting the state of the system. 

If one is only interested in static equilibrium properties, it 
suffices to generate an ensemble of equilibrium states, which 
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may lack any temporal correlations. To obtain dynamic and 
non-equilibrium properties dynamic simulation methods 
that produce trajectories in phase space are to be used. The 
connection between the microscopic behavior and macro- 
scopic properties of the molecular system is governed by the 
laws of statistical mechanics. 

Figure I also shows the broad applicability of computer 
simulation methods in chemistry. For any fluid-like, essen- 
tially many-particle system, it is the method of choice. 
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Fig. 1. Classification of molecular systems. Systems in the shaded area are 
amenable to treatment by computer simulation. 
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The expanding role of computational methods in chemis- 
try has been fueled by the steady and rapid increase in com- 
puting power over the last 40 years, as is illustrated in Figure 
2. The ratio of performance to price has increased an order 
of magnitude every 5-7 years, and there is no sign of any 
weakening in this trend. The introduction of massive paral- 
lelism in computer architecture will easily maintain the pres- 
ent growth rate. This means that more complex molecular 
systems may be simulated over longer periods of time, or 
that it will be possible to handle more complex interaction 
functions in the decades to come. 

The present article is concerned with computer sirnulation 
of molecular systems. In Section 2 the two basic problems 
are formulated, a brief history of dynamic computer simula- 
tion is presented, the reliability of current simulations is dis- 
cussed, and the usefulness of simulation studies is consid- 
ered. Section 3 deals with simulation methodology: choice of 
computational model and atomic interaction function (Sec- 
tion 3.1), techniques to search configuration space for low 
energy configurations (Section 3.2), boundary conditions 
(Section 3.3), types of dynamical simulation methods (Sec- 

- 

tion 3.4), algorithms for integration of the equations of mo- 
tion (Section 3.9, and finally equilibration and analysis of 
molecular systems (Section 3.6). In Section 4, a number of 
applications of computer simulation in chemistry are dis- 
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Fig. 2. Development of computing power of the most powerful computers. 

cussed and examples are given. Finally, future developments 
are considered in Section 5. For other relatively recent 
monographs on computer simulation the reader is referred 
to the literature (see Refs. [l-91). 

2. Computer Simulation of Molecular Systems 

2.1. Two Basic Problems 

Two basic problems are encountered in the computer sim- 
ulation of fluid-like molecular systems: 
1 .  the size of the configurational space that is accessible to the 

molecular system, and 
2. the accuracy of the molecular model or atomic interaction 

function or force field that is used to model the molecular 
system. 
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Table 1. Models at different levels of approximation 

Model Degrees of freedom Example of 
left removed predictable property force field 

- quantum mechanical nuclei, electrons nucleons reactions 

- all atoms, atoms electrons binding charged 
polarizable dipoles ligand 

- all atoms solute + solvent d 1 p o 1 e s hydration 
atoms 

- all solute atoms solute atoms solvent gas phase conformation 

- groups of atoms atom groups individual atoms folding topology 
as balls of macromolecule 

2.1.1. Size of the Configurational Space 

The simulation of molecular systems at  non-zero tempera- 
tures requires the generation of a statistically representative 
set of configurations, a so-called ensemble. The properties of 
a system are defined as ensemble averages or integrals over 
the configuration space (or more generally phase space). For 
a many-particle system the averaging or  integration will in- 
volve many degrees of freedom, and as a result can only be 
carried out over part of the configuration space. The smaller 
the configuration space, the better the ensemble average or 
integral can be approximated. When choosing a model from 
which a specific property is to be computed, one would like 
to  explicitly include only those degrees of freedom on which 
the required property is dependent. 

In Table 1 a hierarchy of models is shown, in which 
specific types of degrees of freedom are successively re- 
moved. Examples are given of properties that can be com- 
puted at  the different levels of approximation. If one is inter- 
ested in chemical reactions, a quantum mechanical treatment 
of electronic degrees of freedom with the nuclear coordinates 
as parameters is mandatory. The intranuclear degrees of 
freedom (nucleon motion) are left out of the model. The 
computing power required for a quantum mechanical treat- 
ment scales a t  least with the third power of the number of 
electrons N ,  that are considered. Such a treatment is only 
possible for a limited number of degrees of freedom. At a 
next level of approximation the electronic degrees of free- 
dom are removed from the model and approximated by 
(point) polarizabilities. Such a model, allowing for motions 
of polarizable atoms, could, e.g., be used to compute the 
binding properties of polar or  charged ligands which will 
polarize the receptor. At this level of modeling the comput- 
ing effort scales with the square of the number of atoms N , .  
This means that many more atoms can be considered than at  
the quantum level. Removal of the polarizability of the 
atoms yields a next level of approximation, in which only 
atomic positional degrees of freedom are considered and the 
mean polarization is included in the effective interatomic 
interaction function. Such a model allows for the study of 
solvation properties of molecules. When studying solutions, 
a next level of approximation is reached by omitting the 
solvent degrees of freedom from the model and simulta- 
neously adapting the interaction function for the solute such 
that it includes the mean solvent effect. When studying 
protein folding, the configuration space spanned by all 
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LW [14] 1 

~~ 

increasing: 
simplicity, 
speed of computation, 
search power, 
time scale 

decreasing : 
complexity, accuracy of 
atomic properties 

protein atoms is still far too large to be searched for low 
energy conformations. In this case a further reduction in it 
can be obtained by representing whole groups of atoms, for 
example an amino acid residue, as one or  two balls (3 or 6 
degrees of freedom). 

From this discussion it is clear that the level of approxima- 
tion of the model that will be used in the simulation will 
depend on the specific property one is interested in. The 
various force fields that are available correspond to different 
levels of approximation, as is illustrated in the right half of 
Table 1 .  There is a hierarchy of force fields. 

Once the level of approximation has been chosen, that is, 
the types of degrees of freedom in the model, one must decide 
how many degrees of freedom (electrons, atoms, etc.) are to  
be taken into account. How small a system can be chosen 
without seriously affecting a proper representation of the 
property of interest? The smaller the size of the system the 
better its degrees of freedom can be sampled, or in dynamic 
terms, the longer the time scale over which it can be simu- 
lated. 

We may summarize the first basic problem in the comput- 
er simulation of molecular systems as follows: the level of 
approximation of the model should be chosen such that 
those degrees of freedom that are essential to  a proper eval- 
uation of the quantity or property of interest can be suffi- 
ciently sampled. In practice any choice involves a compro- 
mise between type and number of degrees of freedom and 
extent of the simulation on the one hand, and the available 
computing power on the other. 

2.1.2. Accuracy of Molecular Model and Force Field 

When the degrees of freedom are infinitely dense or long 
sampled the accuracy by which various quantities are pre- 
dicted by a simulation will depend solely on the quality of the 
assumptions and approximations of the molecular model 
and interatomic force field. At the level (Table 1) of quantum 
mechanical modeling the basic assumption is the validity of 
the Born-Oppenheimer approximation separating electronic 
and nuclear motion. The interaction between point atoms 
and electrons is described by Coulomb’s law and the Pauli 
exclusion principle. When excluding chemical reactions, low 
temperatures or details of hydrogen atom motion, it is rela- 
tively safe to assume that the system is governed by the laws 
of classical mechanics. The atomic interaction function is 
called an effective interaction since the average effect of the 
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omitted (electronic) degrees of freedom has been incorporat- 
ed in the interaction between the (atomic) degrees of freedom 
explicitly present in the model. To each level of approxima- 
tion in Table 1 there corresponds a type of effective interac- 
tion or force field. For example, a pair potential with an 
enhanced dipole moment (enhanced atomic charges) may be 
used as an effective potential that mimics the average effect 
of polarizability. 

In view of the different levels of approximation of molec- 
ular models it is not surprising that the literature contains a 
great variety of force fields. They can be classified along 
different lines: 

type of compound that is to be mimicked, e.g. carbohy- 
drates, sugars, polypeptides, polynucleotides ; 
type of environment of the compound of interest; e.g. gas 
phase, aqueous or nonpolar solution; 
range of temperatures covered by the effective interaction; 
type of interaction terms in the force field; e.g. bond 
stretching, bond angle bending, torsional terms, two-, 
three- or many-body nonbonded terms; 
functional form of the interaction terms; e.g. exponential 
or 12th power repulsive nonbonded interaction; 
type of parameter fitting, that is, to which quantities are 
parameters fitted, and are experimentally or ab-initio the- 
oretically obtained values used as target values. 
We note that the choice of a particular force field should 

depend on the system properties one is interested in. Some 
applications require more refined force fields than others. 
Moreover, there should be a balance between the level of 
accuracy or refinement of different parts of a molecular 
model. Otherwise the computing effort put into a very de- 
tailed and accurate part of the calculation may easily be 
wasted due to the distorting effect of the cruder parts of the 
model. 

2.1.3. Assumptions, Approximations and Limitations 

When using a particular model to predict the properties of 
a molecular system, one should be aware of the assumptions, 
simplifications, approximations and limitations that are irn- 
plicit in the model. Below, we list the four most important 
approximations and limitations of classical computer simu- 
lation techniques which should be kept in mind when using 
them. 

2.1.3.1. Classical Mechanics of Point Masses 

A molecular system is described as a system of point mass- 
es moving in an effective potential field, which is generally a 
conservative field, i.e. it only depends on the instantaneous 
coordinates of the point masses. The motion of the point 
masses is with a sufficient degree of accuracy governed by the 
laws of classical mechanics. These assumptions imply the 
following restrictions to modeling: 
- low-temperature (0- 10 K) molecular motion is not ade- 

- detailed motion of light atoms such as hydrogen atoms is 

- description of chemical reactions lies outside the scope of 

quately described; 

not correctly described even at room temperature; 

classical simulation methods. 

For a short discussion of the inclusion of quantum correc- 
tions to a classical treatment or of the quantum (dynamical) 
simulation techniques that are presently under development, 
we refer to Section 5.1. 

2.1.3.2. System Size or Number of Degrees of Freedom 
to be Included 

Only a rather limited number of atoms can be simulated 
on a computer. Simulations of liquids typically involve 10’- 
103 atoms, simulations of solutions or crystals of macro- 
molecules about 103-2 x lo4 atoms. Generally, the system 
size is kept as small as possible in order to allow for a sufti- 
cient sampling of the degrees of freedom that are simulated. 
This means that those degrees of freedom that are not essen- 
tial to the property one is interested in should be removed 
from the system. The dependence of the property of interest 
on the size of the system may give a clue to the minimum 
number of degrees of freedom required for an adequate sim- 
ulation of it. The larger the spatial correlation length of the 
property of interest, the more atoms are to be included in the 
simulation. 

2.1.3.3. Sufliciency of Sampling of Configuration Space 
or Time Scale of Processes 

Computer simulation generates an ensemble of configura- 
tions of the system. Whether the generated set of configura- 
tions is representative for the state of the system depends on 
the extent to which the important (generally low energy) 
parts of the configuration space (or, more generally formu- 
lated, phase space) have been sampled. This depends in turn 
on the sampling algorithm that is applied. This should be 
able to overcome the multitude of barriers of the multi- 
dimensional energy surface of the system. In dynamic simu- 
lations, the time scale of the process that is mimicked is 
limited. Presently, molecular simulations cover time periods 
of 100- 1000 picoseconds. In the case of activated processes 
longer time scales can be reached by using special 
tricks.[’ 5 9  Essentially slow processes, like the folding of a 
protein, are still well out of reach of computer simulation. 
We note that the observation that a property is independent 
of the length of a simulation is a necessary but not a sufficient 
condition for adequate sampling. The system may just reside 
for a period longer than the simulation time in a certain area 
without being effected by a nearby region of much lower 
energy from which it is separated by a large energy barrier. 

2.1.3.4. Accuracy of the Molecular Model and Force Field 

As is illustrated in Table 1, there exists a variety of molec- 
ular models and force fields, differing in the accuracy by 
which different physical quantities are modeled. The choice 
of a particular force field will depend on the property and 
level of accuracy one is interested in. 

When studying a molecular system by computer simula- 
tion three factors should be considered (cf. Fig. 3). 
1. The properties of the molecular system one is interested in 

should be listed and the configuration space (or time 
scale) to be searched for relevant configurations should be 
estimated. 
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Fig. 3. Choice of molecular model, force field and sample size depends on 
1) the property one is interested in (space to be searched), 2) required accuracy 
of the prediction, 3) the available computing power to generate the ensemble. 

2. The required accuracy of the properties should be speci- 
fied. 

3. The available computer time should be estimated. 
Given these three specifications the molecular model and 

force field should be chosen. As is indicated in Table 1 there 
is a trade off between accuracy of the force field on the one 
hand and the searching power or time scale that can be 
attained on the other. We note that in many practical cases 
one should abandon the idea of trying to simulate the system 
of interest, since the available computing power will not 
allow for a sufficiently accurate simulation. 

2.2. History of Dynamic Computer Simulation 

The growth in the number of applications of computer 
simulation methods in chemistry and physics is directly 
caused by the rapid increase in computing power over the 
last four decades (Fig. 2). Table 2 shows the development of 

Table 2. History of computer simulation of molecular dynamics. 
~ 

Year System Length of Required cpu 
simulation time on super- 
is1 computer [h] 

1957 hard two-dimensional disks [17] 
1964 monatomic liquid [is] lo-" 0.05 
1971 molecular liquid [19] 5 x lo- ' '  1 
1971 molten salt [20] 10-11 1 
1975 simple small polymer 1211 10-11 1 
1971 protein in vacuo [22] 2 x 10-'1 4 
1982 simple membrane [23] 2 x 10-10 4 
1983 protein in aqueous crystal [24] 2 x  lo- ' '  30 
1986 DNA in aqueous solution [25] 10-'0 60 
1989 protein-DNA complex in solution [26] lo-' ' 300 

large polymers 10-8 103 
reactions 107 
macromolecular interactions 10-3 108 
protein folding lo- '  109 

the application of molecular dynamics simulation in chemis- 
try. Alder and Wainwright pioneered the method using 2-di- 
mensional hard disks. Rahman, who can really be considered 
the father of the field, simulated liquid argon in 1964, liquid 
water in 1971, and superionic conductors in 1978.[271 H e  aIso 
made many contributions to the methodology, and stimulat- 

ed the dissemination of the technique in the scientific com- 
munity. In the seventies, the transition from atomic to 
molecular liquids was made: rigid molecules like water 
(1971), flexible alkanes (1975), and a small protein, trypsin 
inhibitor (1977). The application to molten salts (1971) re- 
quired the development of methods to handle long-range 
Coulomb interactions. The eighties brought simulations of 
biomolecules of increasing size in aqueous solution. For a 
more thorough review of the past and present of dynamic 
computer simulation in chemistry and physics we refer to the 
monographs of McCammon and Harveyr5I and Allen and 
Tildesley.[61 

From Table 2 it is also clear that a supercomputer is still 
many orders of magnitude slower than nature: a state of the 
art simulation is about 1015 times slower than nature. Many 
interesting systems and processes still fall far outside the 
reach of computer simulation. Yet, with a growth rate of a 
factor 10 per 5-7 years for (super)computing power the 
speed of simulation will have caught up with that of nature 
in about 100 years. 

2.3. Accuracy and Reliability of Computer Simulation 

The reliability of predictions made on the basis of comput- 
er simulation will basically depend on two factors: 
1 )  whether the molecular model and force field are sufficient- 
ly accurate, and 2) whether the configuration space accessi- 
ble to the molecular system has been sufficiently thoroughly 
searched for low-energy configurations. Although the accu- 
racy of a prediction may be estimated by considering the 
approximations and simplifications of the model and com- 
putational procedure, the final test lies in a comparison of 
theoretically predicted and experimentally measured proper- 
ties. In order to provide a firm basis for the application of 
computer simulation methods the results should be com- 
pared with experimental data whenever possible. 

In this context we would like to stress that good agreement 
between calculated and experimental data does not necessar- 
ily mean that the theoretical model underlying the calcula- 
tion is correct. Good agreement may be due to any of the 
following reasons: 
1. The model is correct, that is, any other assumption used 

to derive the model, or any other choice of parameter 
values would give bad agreement with experiment. 

2. The property that is compared is insensitive to the as- 
sumptions or parameter values of the model, that is, 
whatever parameter values are used in the model calcula- 
tion, the agreement with experiment will be good. 

3. Compensation of errors occurs, either by chance or by 
fitting of the model parameters to the desired properties. 

A number of examples of the last case, viz. good agree- 
ment for the wrong reason, are given in Ref. [28]. Here, we 
would only like to remind the reader that it is relatively easy, 
when modeling high-dimensional systems with many 
parameters, to choose or  fit parameters such that good 
agreement is obtained for a limited number of observable 
quantities. On the other hand, disagreement between simula- 
tion and experiment may also have different causes: 1)  the 
simulation is not correct, the experiment is, 2) the simulation 
is correct, the experiment is not. 
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With these cautionary remarks in mind we would like to 
turn to an evaluation of the accuracy of current simulation 
studies by comparing simulated with experimental quanti- 
ties. Table 3 contains a scheme of the atomic quantities of 
molecular systems for which comparison between simulated 
and experimental values is feasible. Four  phases are distin- 
guished. The most interesting phase from a chemical point of 
view is that of a molecule in solution. For this phase only few 
accurately measured atomic properties are available for com- 
parison, leaving thermodynamic system properties like the 
free energy of solvation as  a test ground for the simulation. 
Considerably more atomic data are available from crystallo- 
graphic diffraction experiments : atomic positions and mo- 
bility, although the accuracy of the latter is much lower than 
that of the former, due to the simplifying approximations 
(harmonic isotropic motion) used in the crystallographic re- 
finement process. 

Table 3. Possible comparison of simulated properties with experimental ones 
for complex molecules. 

Atomic properties Experimental Phase 
method gas solu- mem- crystal 

tion brane 

Structuri, 

~ positions 

- distance 
- orientations 

Mohili l i '  

X-ray diffraction 
neutron diffraction 
N M R  
N M R  

X-ray diffraction [ y tron diffraction 
ray diffraction 

neutron diffraction 

- B-factors 

~ occupancy factors 

Dynuniic p r o p r r w y  
- vibrational infrared 

frequencies spectroscopy 
~ relaxation rates various N M R  

- diffusion N O  spin label 

Thrrmodinumir properlies 
- density 
~ free energy 
~ viscosity. 

optical techniques 

conductance 

X 

X 

X 

X 

X 

X 

X X 

X X 

X 

X 

In the following subsections examples will be given of a 
comparison of various atomic and system properties for dif- 
ferent compounds. The examples are taken from our own 
work. and so are all based on the GROMOS force field.['2' 
They only serve as an indication of the degree of accuracy 
that can be obtained for different properties using current 
modeling methods. 

2.3.1. Atomic Properties: Positions and Mobilities in Crystals 

From a simulation the average molecular structure can be 
easily calculated and compared with experiment. Table 4 
contains the deviation between simulated and measured 
atomic positions for a number of molecular crystals. The 
structural deviation depends on the size of the molecule and 
ranges from 0.2 A to 1.2A. The numbers are an average over 
part or over all atoms in the molecules. This means that parts 
of the molecule will deviate more and other parts will deviate 

Table4. Comparison of MD time-averaged structures with experimental X-ray 
or neutron diffraction structures. 

Molecule Size (number Root mean square (RMS) differ- 
of glucose 
units or amino C, or C ,  all atoms excl. 
acid residues) atoms H atoms 

ence in atomic positions [A] 

cyclodextrin (a/P) 1291 6 0.1310.35 0.2510.51 
cyclosporin A [30] 11 0.3 0.6 
trypsin inhibitor [31] 58 1 .o 1.5 
subtilisin [32] 27s 1 -0 ! .2 

less from the experimental structure. This is illustrated in 
Figure 4, which shows the deviation for the backbone C, 
atoms as a function of residue number averaged over all four 
BPTI (bovine pancreatic trypsin inhibitor) molecules in the 
crystal unit cell. Most of the atoms deviate less than 1 A. 
Figure 5 shows the root mean square (rms) atomic positional 

4 026 030 k r 

[nml OIL - 
010 - 

006- 

002 - 
I . . . . . , . . , Iu .. 

10 20 30 LO 50 60 
N- 

Fig. 4. Root mean square difference between the trypsin inhibitor simulated 
time- and molecule-averaged C. atomic positions and the X-ray positions ac- 
cording to [31]. A = root mean square deviation, N = aminoacid residue num- 
ber. 

fluctuations calculated from the M D  simulation and from 
the crystallographic B-factors. The largest discrepancy is still 
rather small, about 0.3 A. 

012 I 

",:I , , , , , , , , , , , 
10 20 30 LO 50 60 

N- 

Fig. 5. Root mean square positional fluctations for the trypsin inhibitor atoms 
averaged over the backbone atoms of each residue according to 1311. Solid line: 
simulated results. Broken line: fluctuations derived from a set of X-ray temper- 
ature factors. rms = root mean square fluctuation, N = amino acid residue 
number. 

A more stringent test of the simulation is to check whether 
partially occupied atomic sites are reproduced. The neutron 
diffraction work on p-cyclodextrin shows that 16 hydrogen 
atoms occupy two alternative sites. In the crystal simulation 
a non-zero occupancy is observed for 84 % of the hydrogen 
sites, and for 62 YO of the hydrogen atoms the relative occu- 
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pancy of the two alternative sites is qualitatively repro- 
duced 

The molecular structure can also be described in terms of 
hydrogen bonds. Generally the experimentally observed hy- 
drogen bonds are also observed in the simulation. Again 
cyclodextrin crystals form a sensitive test case for the simula- 
tions, since peculiar geometries such as three-center hydro- 
gen bonds, and dynamic processes such as flip-flop hydrogen 
bonds have been experimentally observed. Almost all exper- 
imentally observed three-center hydrogen bonds in crystals 
of CL- and P-cyclodextrin are reproduced in M D  simulation, 
even as far as the detailed asymmetric geometry is con- 
~ e r n e d . ' ~ ~ ]  In a so-called flip-flop hydrogen bond the direc- 
tionality is inverted dynamically. In a MD simulation of 
B-cyclodextrin, 16 of the 18 experimentally detected flip-flop 
bonds are 

2.3.2. Atomic Properties: Distances in Solution 

Structural data of solutions can be obtained by two- 
dimensional nuclear magnetic resonance spectroscopy (2D- 
NMR) with exploitation of the nuclear Overhauser (NOE) 
experiments.[351 The data come in the form of a set of upper 
bounds or constraints to specific proton-proton distances. 
This affords the possibility of comparing these proton-pro- 
ton distances as predicted in a simulation with the experi- 
mentally measured NOE bounds. In the literature,[251 such a 
comparison is given for a set of 174 NOE's in an eight base- 
pair DNA fragment in aqueous solution: 80% of the NOE 
distances are satisfied by the simulation within experimental 
error, the mean deviation is 0.22 A, and the maximum devi- 
ation amounts to 2.9 A. 

2.3.3. Atomic Properties: Orientation of Molecular 
Fragments in Membranes 

The degree of order in a membrane or lipid bilayer can be 
measured selectively along the aliphatic chain by deuterium 
NMR spectroscopy.[361 In Figure 6[j71 both experimental 
and M D  order parameters are displayed for all CH, units in 
a sodium ion/water/decanoate/decanol bilayer system as a 
function of the position of the carbon atom in the aliphatic 
chain. The experimentally observed plateau in the order 
parameters is well reproduced. 

O P 0 4  'I OP 
0 4  

" 1 ;  1 ; I 0  00 0 2 4 6 8 1 0  
N- N- 

Fig. 6. Carbon-deuterium order parameters as a function of carbon atom num- 
ber along the aliphatic chain of decanol (upper panel) and decanoate (lower 
panel) [37]. The head group has number zero. Solid line: simulated result. 
Squares: experimental values. O.P. = order parameter, N = carbon atom num- 
ber. 

2.3.4. Atomic Properties: Diffusion in Solutions and in 
Membranes 

The dynamic properties of simulations of molecular sys- 
tems are hard to test by comparison with experiment. An 
exception is the diffusion constant. Its calculation and com- 
parison with experiment is a standard test for models of 
liquid water. The diffusion constant of the simple three-point 
charge (SPC) water model is 4.3 x cm2 s-'  compared 
with an experimental value of 2 . 7 ~ 1 0 - ~ c m ~ s - ~  at 
305 K.[381 Inclusion of a correction term for self-polarization 
in the SPC model led to a reparametrization, to the SPC/E 
(extended simple point charge) model, which yields a consid- 
erably smaller diffusion constant of 2.5 x lo-' cm2 s-1.[391 

In the bilayered sodium ion/water/decanoate/decanol sys- 
tem mentioned in the previous section the simulated diffu- 
sion constants are: 2.7 x cm2 s- '  (decanoate) and 
5.2 x cm2 s -  (decanol), which values are to be com- 
pared with the value of 1.5 x cm2 s- '  measured with 
nitroxide spin labels. 

2.3.5. System Properties: Thermodynamic Quantities 

Instead of atomic properties, thermodynamic system 
properties like the density or free energy of solvation can be 
calculated from a simulation and compared to experimental 
values. 

For a crystal of a cytidine derivative X-ray diffraction 
data and M D  simulation data were compared at two differ- 
ent temperatures.[401 Upon raising the temperature from 
11 3 K to 289 K the volume of the unit cell increased by 2.5 % 
in the simulation at constant pressure, which value is to be 
compared with an experimentally determined increase of 
3.7%. At 289 K the simulated density was only 1.3% too 
large. A slightly larger discrepancy was found in a MD sim- 
ulation of crystalline cyclosporin A: the simulated density of 
1.080 g cm-3 was 3.6% larger than the experimental value 
of 1.042 g cm-3.[301 Comparable deviations have been found 
for other systems: the SPC/E model yields 0.998 g cm-3 
at 306K, compared with an experimental value of 
0.995 g cm 

Finally, we quote an example of a free energy of hydra- 
tion. For the solvation of methanol in water the standard 
GROMOS parameters yield a free enthalpy of 7 kJ mol-' 
compared with an experimental value of 5 kJ mol- *.[2s] 

However, when charged moieties are involved the accuracy 
by which free energy of solvation can be calculated is no 
better than about 10-20 kJ mol-'.[28.411 

at  305 K.[391 

2.4. Is Computer Simulation Useful? 

The prediction of properties by computer simulation of 
complex molecular systems is certainly not accurate enough 
to justify abandoning the measurement of properties. If a 
measurement is not too difficult it is always to be preferred 
over a prediction by simulation. The utility of computer 
simulation studies does not lie in the (still remote) possibility 
of replacing experimental measurement, but rather in its abil- 
ity to complement experiments. Quantities that are inaccessi- 
ble to experiment can be monitored in computer simulations. 
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We consider the computer simulation of complex molecu- 
lar systems to be useful for the following reasons. 
1 .  

2. 

3. 

4. 

3. 

It provides an understanding of the relation between mi- 
croscopic properties and macroscopic behavior. In a com- 
puter a microscopic molecular model and force field can 
be changed at will and the consequences for the macro- 
scopic behavior of the molecular system can be evaluated. 
During the last few years computer simulation has be- 
come a standard tool in the determination of spatial 
molecular structure on the basis of X-ray diffraction or 
2D-NMR data. 
Under favorable conditions computer simulation can be 
used to obtain quantitative estimates of quantities like 
binding constants of ligands to receptors. This is especial- 
ly useful where the creation of the ligand or the measure- 
ment of its binding constant is costly or time-consuming. 
Finally we mention the possibility of carrying out simula- 
tion under extreme (unobservable) conditions of temper- 
ature and pressure. 

Methodology 

Here we briefly describe the methodology of classical com- 
puter simulation as it is applied to complex molecular sys- 
tems. 

3.1. Choice of Molecular Model and Force Field 

3.1.1. Current Force Fields for Molecular Systems 

A typical molecular force field or  effective potential for a 
system of N atoms with masses m, (i = 1,2,. . .,N) and carte- 
sian position vectors r; has the form (1).  

The first term represents the covalent bond stretching inter- 
action along bond b. It is a harmonic potential in which the 
minimum energy bond length b, and the force constant Kb 
vary with the particular type of bond. The second term de- 
scribes the bond angle bending (three-body) interaction in 
similar form. Two forms are used for the (four-body) dihe- 
dral angle interactions: a harmonic term for dihedral angles 
5 that are not allowed to make transitions, e.g. dihedral 
angles within aromatic rings, and a sinusoidal term for the 
other dihedral angles cp, which may make 360 degree turns. 
The last term is a sum over all pairs of atoms and represents 
the effective nonbonded interaction, composed of the van 
der Waals and the Coulomb interaction between atoms i and 
j with charges qi and qj at a distance rij .  

There exists a large number of variants of expression 
(I)." - 1 3 . 4 2 -  531 Some force fields contain mixed terms like 

K,,[b - b,][O - O,], which directly couple bond-length and 
bond-angle vibrations.[421 Others use more complex dihedral 
interactions terms.[43* 441 The choice of the relative dielectric 
constant E, is also a matter of dispute. Values ranging from 
c, = 1 [I ', 12] to E,  = 814'] have been used, while others take c, 
proportional to the distance r,, . I 2 2 ,  46,471 Sometimes the 
Coulomb term is completely ignored.[44] Although hydrogen 
bonding can be appropriately modeled using expression 
(1),["* 12*48s491 in some force fields special hydrogen bond- 
ing potential terms are used to ensure proper hydrogen 
b ~ n d i n g . [ ~ ~ - ~ ~ ]  An other way to refine expression ( 1 )  is to 
allow for non-atomic interaction centers or virtual sites, that 
is, interactions between points (e.g. lone pairs) not located on 
atoms.[501 For solvents, especially water, a variety of molec- 
ular models is a ~ a i l a b l e , [ ' ~ * ~ * ~ ~ ~ ~  of which a few have been 
developed explicitly for use in mixed solute-water sys- 
tems." 1 3 4 9 1  Models for nonpolar solvents like carbon tetra- 
chloride are also available.[5z1 

When determining the parameters of the interaction func- 
tion (1) there are essentially two routes to take. The most 
elegant procedure is to fit them to results (potential or field) 
of ab-initio quantum calculations on small molecular clus- 
ters. However, due to various serious approximations that 
have to be made in this type of procedure, the resulting force 
fields are in general not very satisfactory. The alternative is 
to fit the force field parameters to experimental data (crystal 
structure, energy and lattice dynamics, infrared, X-ray data 
on small molecules, liquid properties like density and en- 
thalpy of vaporization, free energies of solvation, nuclear 
magnetic resonance data, etc.). In our opinion the best re- 
sults have been obtained by this semi-empirical ap- 
proach." ' 7  531 

We wish to stress that one should fit force field parameters 
to properties of small molecules, which may be considered as 
building blocks of larger molecules such as proteins and 
DNA, and subsequently apply them to these larger 
molecules as a test without any further adaptations to im- 
prove the test results. 

The choice of a particular force field should depend on the 
type of system for which it has been designed. The MM2 
force field1131 is based on gas phase structures of small or- 
ganic compounds. The AMBER[471 and CHARMM1461 
force fields are aimed at a description of isolated polypep- 
tides and polynucieotides, in which the absence of a solvent 
(aqueous) environment is compensated by the use of a dis- 
tance-dependent dielectric constant c,. The ECEPP[43, 541 

and UNICEPP[551 force fields use E, = 4, whereas the GRO- 
MOS [ I  2% 491 force field uses E, = 1 ,  since it has been set up for 
simulation of biomolecules in aqueous environment. This 
also holds for the OPLS["] force field which is aimed at a 
proper description of solvation properties. Force fields that 
are applicable to a more restricted range of compounds like 
ions,[s61 liquid metals,[571 or carbohydrate~,[~*] are 
manifold. The quality of the various force fields should be 
judged from the literature concerning their application to 
molecular systems. 

3.1.2. Inclusion of Polarizability 

The term in the interaction function ( 1 )  representing the 
nonbonded interactions consists only of a summation over 
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all pair interactions in the system. Nonbonded many-body 
interactions are neglected. Yet, inclusion of polarizability of 
atoms or bonds will be inevitable if one would like to simu- 
late, e.g., the binding of a charged hgdnd, which will polarize 
the part of the receptor to which it is binding (Table 1). 
About 10% (4 kJ mol-') of the energy of liquid water is 
polarization energy. The infinite frequency dielectric con- 
stant of water is E ,  = 5.3, its effective dipole moment 
changes from 1.85 D in the gas phase to 2.4 D in the liquid. 
An analysis of the contribution of polarizability to local 
fields in proteins is given in Ref. [59]. 

Inclusion of polarizability in the molecular model is not 
too difficult, as can be observed from the following simple 
outline.[601 We consider a system of N point dipoles with 
Cartesian position vectors ri,  dipole moments p ,  and polariz- 
abilities a, (constant, isotropic). The induced dipoles Apt 
obey a field equation (2), where E, denotes the electric field 

N 
Apt = aiEi = ai C Kj;,[pj + Apj] 

j =  1 
* i  

at position ri and the field tensor Tij is given by Equation (3) .  
The field equation can be solved for Api either by the inver- 

(3)  

sion of a matrix of size 3N x 3N, or by iteration. The former 
method is impractical for a molecular system containing 
thousands of atoms. The latter method is well suited for use 
in MD simuiations, since the induced dipoIes at the previous 
MD integration time step, Api(t - At), will be an excellent 
starting point for the iterative solution of the field equation 
(2) at time t ,  which yields Api(t). In this way inclusion of 
polarizability may increase simulation times by only 20- 
100%. 

Computer simulations that include polarizability have 
only been performed for a limited number of molecular sys- 
tems, such as ionic liquids,[10,61] and a single 
protein.[63. 641 Many aspects of the treatment of polarizabil- 
ity in MD simulations are still under investigation. What is 
the most practical way to model polarizability? 
( I )  By inducing point dipoles, as sketched above, 
(2) by changing the magnitudes of (atomic) charges, 
(3)  by changing the positions of (atomic) charges. 
How should the size of the atomic polarizabilities ai be cho- 
sen, etc? 

3.1.3. Treatment of Long Range Coulomb Forces 

The summation of the last term in the interaction function 
( 3 )  covering the nonbonded interaction runs over all atom 
pairs in the molecular system. It is proportional to N 2 ,  the 
square of the number of atoms in the system. Since the other 
parts of the calculation are proportional to N ,  computation- 
al efficiency can be much improved by a reduction of this 
summation.The simplest procedure is to apply a cut-off 
criterion for the nonbonded interaction and to use a list of 
neighbor atoms lying within the cut-off, which is only updat- 
ed every so many simulation steps. The cut-off radius R, 
usually has a value between 6 8, and 9 8, and the neighbor list 
is updated about every 10 or 20 M D  time steps. This proce- 

dure does not introduce any errors as long as the range of the 
nonbonded interaction is smaller than R,. However, the 
Coulomb term in (1) is proportional to r- ' ,  which makes it 
long-ranged. If the molecular model does not involve bare 
(partial) charges on atoms, but only dipoles or higher multi- 
poles, the electrostatic interaction term becomes proportion- 
al to F3, which makes it of much shorter range. However, 
when dipoles are correlated over larger distances, as is the 
case for secondary structure elements like a-helices in 
proteins, their interactions again become l~ng- ranged . [~~J  

In the following subsections we briefly discuss a variety of 
methods for the treatment of long-range electrostatic inter- 
actions in molecular systems.[66.671 

3.1.3.1. Distance Dependent Dielectric Constant 

A simple way to reduce the range of the Coulomb interac- 
tion is to introduce a reIative dielectric constant proportional 
to r, viz. E, = r (in 8,). The interaction becomes proportional 
to r-' .  It is difficult to find a physical argument in favor of 
this approximation. Its overall effect is to effectively reduce 
all types of long-ranged interactions. Due to its simplicity it 
has been incorporated into a number of current force 
fields.[46. 471 Nevertheless, we think this approximation is too 
crude for practical applications. 

3.1.3.2. Cut-off Radius and Neutral Groups of Atoms 

When applying a cut-off radius &, the discontinuity of 
the interaction at a distance r = R, will act as a noise source 
in a MD simulation, and this will artificially increase the 
kinetic energy of the atoms and thus the temperature of the 
system. A possible way to reduce the noise is to multiply the 
nonbonded interaction term in (1) with a so-called switching 
function (4), which satisfies the conditions S(R,) = 1, 

r < R, 

r > R, 
- r)2(R, + 2 r  - 3 R,)/(R, ~ Rs)3 R, < r < R, (4) 

dS/dr(R,) = 0, S(R,) = 0, dS/dr(R,) = 0. Its effect is to 
smoothen the interaction on the interval (R,, RJ, but there 
is no physical argument for its use. An empirical evaluation 
of the use of switching functions can be found in Ref. [68]. 

When the (partial) atomic charges of a group of atoms add 
up to exactly zero, the leading term of the electric interaction 
between two such groups of atoms is of dipolar character, 
that is, proportional to r- '. For larger r the sum of the r- 
monopole contributions of the various atom pairs to the 
groupgroup interaction will become zero. Therefore, the 
range of the electric interaction can be considerably reduced 
when atoms are assembled in neutral groups, so-called 
charge groups, which have a zero net charge, and for which 
the electric interaction with other (groups of) atoms is either 
calculated for all atoms of the charge group or for 
none.[". 691 When using the charge group concept the cut-off 
criterion should be applied to the distance between groups, 
and a switching function like (4) must nor be used, since it 
distorts in the interval (R,, R,) the proper r-l  weighting of 
atom-atom monopole interactions. 
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3.1.3.3. Cut-off‘ Radius plus Multipole Expansion plicitly taken into account as degrees of freedom in the sys- 
tem that is simulated. If parts of the system are homoge- 
neous, like the bulk solvent surrounding a solute, the number 
of atoms or degrees of freedom can be reduced considerably 
by modeling of the homogeneous part as a continuous medi- 
um, e.g. a continuous dielectric. In this type of approxima- 
tion the system is divided into two parts: ( 1 )  an inner region 
where the atomic charges q, are explicitty treated (dielectric 

The technique of using neutral groups of atoms is based 
on the more general fact that a charge distribution of a finite 
group of atoms can be approximated by a multipole expan- 
sion (monopole, dipole, quadrupole, etc.). The electric inter- 
action between two groups of atoms can be formulated as 
the product of the two multipole expansions. The terms in 
the resulting expression can be grouped according to their 
distance dependence: monopole-monopole (r-  ’), mono- 
poleedipole (r-  *), monopolequadrupole and dipole-dipole 
( Y 3 ) ,  etc. At long distance only the leading terms in the 
series need to be taken into account. Application of this 
multipole expansion approximation in MD simulations was 
suggested by Ladd.[”] It is also used in combination with the 
“cut-off plus atom pair list” technique in Ref. [46]. 

3.1.3.4. Twin Range Method 

The twin range method[661 is illustrated in Figure 7. Two 
cut-off radii are used. The atomsjlying within a distance Rf 
from atom i are stored in a neighbor list of atom i. The 
interaction of the atomsj for which RA < rij < R; with atom 
i, is stored in the form of a so-called long-range force Ff.‘ on 
atom i. At each MD time step the nonbonded interaction 
consists of two contributions: (I)  the short-range part which 
is calculated from the neighbor list using the actual atom 
positions, and (2) the long range part F” which is kept fixed 
during N; time steps. Neighbor list and long range force F“ 
are simultaneously updated every NA (10- 100) time steps. 

This twin range method is based on the assumption that 
the high-frequency components of the long range force may 
be safely neglected. For example, the mean and low frequen- 
cy field of the correlated peptide dipoles of the long a-helix 
are accurately accounted for, only the fast (50 .2  ps) vibra- 
tions are neglected (see Fig. 7). The twin range method can 
also be applied using charged groups instead of atoms.[12] 

&- -  
I-0 

Fig. 8. Non-periodic methods for computing long-range Coulomb forces 3.1.3.5. Continuum Approximations to the Reaction Field 

In the previous subsections approximations to the long- 
range interaction between atoms were discussed that are ex- constant &,), and (2) an outer region which is treated as a 

continuous medium with dielectric constant E~ and ionic 
strength I (see Fig. 8). The potential in the inner region 

[Eq. (5 ) ]  consists of two terms. The first one [Eq. (6)] is a 
direct Coulomb term due to the charges in the inner region, 

which is a solution to the Poisson equation (7) for the inner 

region. The second term is the reaction field potential t,hR(r), 
which satisfies the Poisson equation with zero source terms 
(no charges), that is, the Laplace equation (8). This means 

Fig. 7. Twin range method. High-frequency components of the force on the 
central atom exerted by atoms between @ and R: are neglected. P’ rl, (v) = 0. 
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that $,(r)  is also a solution of (7). The potential in the outer 
region is denoted by $z(r).  If the outer region continuum has 
a finite ionic strength I ,  the potential $,(r) must be a solution 
of the Poisson-Boltzmann equation (9) with inverse Debye 

length IC = 21F2/(&,Rr) in which Fis Faraday’s constant, R 
is the gas constant, and T the temperature. For zero ionic 
strength, (9) reduces to (8). The boundary condition at  infin- 
ity is given by (lo), and at  the boundary between the inner 

lim i/iZ(r) = 0 
1 - 0 0  

and outer regions the potential $(r) [Eq. (1 I)] and the dielec- 
tric displacement &o$(r)  [Eq. (12)] must be continuous: 

where the component of the gradient normal to the 
boundary is denoted by V,, . 

The exact form of $(r)  will depend on the shape of the 
boundary, the values of cZ and K ,  and the computational 
method that is used to solve the field equations (7)-(12). 

3.1.3.6. Continuum Methods: 
Image Charge Approximation to the Reaction Field 

When the boundary is a sphere of radius R the reaction 
field due to a charge qi located at  position ri with respect to 
the origin of the sphere can be approximated (dipolar ap- 
proximation, cZ % e l )  by the field that is generated by a so- 
called image charge 41’” = - (E ,  - E , ) ( E ~  + E 1 ) q i  R/r, that is 
located at  position rim = (R/r i )2ri[711 (see Fig. 8).  The name 
of this approximation is due to  the mirror type of behavior 
of the spherical boundary: if qi approaches the boundary, 4:’” 
will d o  likewise, causing a pole in the potential at the 
boundary. This means that the image approximation breaks 
down for charges close to  the boundary. The other limita- 
tions of the method are the requirement of a spherical 
boundary, and the conditions that I = 0 and c2 + 8,. 

3.1.3.7. Continuum Methods: 
Series Expansion of the Reaction Field 

When the boundary is of irregular shape the reaction field 
potential cannot be written in a closed form, but must be 
approximated numerically. If we assume that I = 0 and 
E~ = 00, the following approach is possible. Since the reac- 
tion field potential $&) must satisfy the Laplace equation 
(8) it may be expanded in Legendre polynomials, which also 
satisfy Equation (8) [Eq. (13)]. If cZ  = 00, we have $z(r )  = 0 

a t  the boundary, or using (11) and (5) Equation (14), a t  the 
boundary, with $,-(r) fixed by (6). The expansion coefficients 

C;” can be determined numerically by performing a least 
squares fit of $&) to the given -I)&) at  a chosen number 
of points on the boundary. 

The method works (Berendsen and Zwinderman, private 
communication), but is rather expensive due to the matrix 
inversion inherent in the least squares fit procedure. Close to 
the boundary the approximation is poor. The other limit- 
ations are that I = 0 and cZ = cc. 

3.1.3.8. Continuum Methods: 
Three-dimensional Finite Difference Techniques 

Another numerical approach is to compute the electric 
potential on a three-dimensional (3D) grid using finite diffe- 
rence methods (Fig. 8). The atomic charges qi are distributed 
over grid points. To each grid point a position-dependent 
dielectric constant c 1  is assigned. Then the field equations 
(7)-(12) can be numerically ~olved.[’’~ This involves the so- 
lution of a set of linear equations for the potential a t  grid 
points. The method is too time-consuming to be used in MD 
simulations, since the density of grid points must be suffi- 
cient to adequately represent the atomic charge distribution. 
The use of a position-dependent dielectric constant introdu- 
ces an arbitrary element into the method. 

3.1.3.9. Continuum Methods: 
Two-dimensional Boundary Element Techniques 

A recent development is the application of Green’s func- 
tion techniques to the electric field problem.[731 The Green’s 

function (15) for the inner region satisfies Equation (16) (a 
Poisson equation with charge a t  ro). The Green’s func- 

tion for the outer region [Eq. (17)] satisfies Equation (18) (a 
Poisson-Boltzmann equation with charge co at  yo). 

The next step is to integrate the following integrand over the 

[G, xexpression (7) for $1 - $, xexpression (16) for G,]  
(19) 

inner region and to convert it by Green’s theorem into an 
integral over the surface of the boundary region. This yields 
Equation (20), consisting of a surface term and a source 
term. 

$l(r) = J [G1(r’Ir)Vn$l(r’) - $l(rOVnGl(r‘Ir)d~ 
surface 
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By integrating (21) and conversion we obtain equation 
(22). 

Application of the boundary conditions (1 1) and (12) yields 
two linear integral equations in I c / l  and V J I ~  on the boun- 
dary surface. These equations can be solved numerically by 
discretization on a surface net, and subsequently solved by 
matrix inversion. The (large) matrix that is to be inverted 
only depends on the shape and position of the boundary 
surface, not on the positions of the charges in the inner re- 
gion. This means that in a M D  simulation the time-consu- 
ming matrix inversion can be avoided as long as the boun- 
dary remains fixed. 

The promise of this method lies in the reduction of a 3D 
problem to a 2D problem. On the boundary surface a charge 
density is generated which produces the proper reaction 
field. Also the methods of Shaw,t741 and of Zauhar and Mor- 

transform the problem from a three-dimensional one 
into a two-dimensional one. 

3.1.3.10. Langevin Dipole Model 

The Langevin dipole model of W a r ~ h e Z I ~ ~ . ~ ~ ]  uses a 3D- 
grid, but it is not a continuum method. The medium in the 
outer region is mimicked by polarizable point dipoles p i  on 
the grid points i of a 3D grid. The dipoles may be thought of 
as representing the molecular dipoles of the solvent mole- 
cules forming the outer region, so the spacing of the grid 
points corresponds to the size of the solvent molecules. The 
size and direction of a dipole p, is determined by the electric 
field Ei at the grid point according to the Langevin formula 
[Eq. (23)]. Here, pa is the magnitude of the dipole moment 

of a solvent molecule, and Cis  a parameter representing the 
molecular resistance to reorientation. The model has been 
applied to protein simulations.t641 Questionable features of 
this model are the representation of the field in the outer 
region and the discreteness near the boundary. 

3. 1 .3.11. Periodic Lattice Summation Methods 

In computer simulations of liquids or solutions, periodic 
boundary conditions are often used to minimize the boun- 
dary effects. The computational box containing the molecu- 
lar system is surrounded by an infinite number of copies of 
itself (see Fig. 9). In this way an infinite periodic system is 
simulated. 

The electric interaction in a periodic system is obtained by 
a summation over all atom pairs in the central box (Fig. 9)  
and over all atom pairs of which one atom lies in the central 
box and the other is a periodic image [Eq. (24)]. 

i # j  if n = O  
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Fig. 9. Periodic cubic system. Central computational box (solid line) with two 
of the infinite number of periodic image boxes. 

The sum over n is a summation over all simple cubic lattice 
points n = (n,L, nyL, n,L) with n,, ny, n, integers. The infi- 
nite sum of point charges must be converted into a form 
which converges faster than Equation (24). 

3.1.3.12. Periodic Methods: the Ewald Sum 

The Ewald sum is a technique for computing the interac- 
tion of a charge and all its periodic images.16*76-781 The 
charge distribution e(r) in the system is an infinite set of 
point charges, mathematically represented as delta functions 

Each point charge q, is now surrounded by an isotropic 
Gaussian charge distribution of equal magnitude and oppo- 
site sign [Eq. (26)]. 

ec (r) = - qi(a/&)3e-~21r-r~12 (26) 

This smeared charge screens the interaction between the 
point charges, so that the interaction calculated using the 
screened charge distribution (27) becomes short-ranged 
[Eq. (28)] due to the appearance of the complementary error 
function (29). 

i t j  if n = O  

m 

erfc(x) = 2x-'/' e-y2dy (29) 

Thus, E" can be well approximated using a finite summation 
in (28). Of course a purely Gaussian charge distribution 
-&(r) must be added to &(r) in order to recover the 
original charge distribution ei(r). The interaction of these 
Gaussian distributions is expressed as a lattice sum in 
reciprocal space minus a self term [Eq. (30)], where 

N 
- (4nso)- 'x-"Za q; (30) 

j =  1 
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k = 2xL- ' ( l , ,  l y ,  1,) and l,, l v ,  1, are integers. Due to the 
presence of the exponential factor the infinite lattice sum can 
be well approximated by a finite one. The parameter CY 

should be chosen such as to optimize the convergence prop- 
erties of both sums (28) and (30) which contribute to 

The Ewald sum technique is routinely used in simulations 
of ionic systems. When applied to  non-crystalline systems 
such as liquids or solutions it has the disadvantage of enhan- 
cing the artifact of the application of periodic boundary 
conditions. 

E = E " ~ .  

3.1.3.13. Periodic Methods: Fourier Techniques 

The Poisson equation (31) for the potential $ ( r )  is a sec- 

ond-order partial differential equation in r-space. However, 
when transformed into reciprocal space (k-space) it becomes 
a simple algebraic equation (32) with the solution (33). 

- k2 $(k) = - €0 * Q ( k )  (32) 

$(k) = (Eok2)-1h(k) (33) 

Here, the 3D Fourier transformation is defined according to 
Equation (34), and likewise for the charge density e(r). The 
inverse transform of Equation (33) yields (35). 

$ ( r )  = F-' { ( ~ ~ k ~ ) - ' F { ~ ( r ) } }  (35) 

Due to the availability of fast Fourier transform techniques 
Equation (35) is a fast method to solve the Poisson equation 
on a periodic three-dimensional grid. For a practical imple- 
mentation of the method we refer to  Ref. [l]. It has been 
employed in the simulation of salts.['] 

3.1.4. Summary 

The choice of molecular model and force field is essential 
to a proper prediction of the properties of a system. There- 
fore, it is of great importance to  be aware of the fundamental 
assumptions, simplifications and approximations that are 
implicit in the various types of models used in the literature. 
When treating molecular systems in which Coulomb forces 
play a role one should be aware of the way these long-ranged 
forces are handled. Since these forces play a dominant role in 
many molecular systems we have tried to give an overview of 
the different methods-and so the different approxima- 
tions-that are in use. 

From Table I and the discussions in the previous sections 
it should be clear that a "best" force field does nor exist. 
What will be the best choice of model and force field will 
depend on the type of molecular system and the type of 
property one is interested in. This means that the molecular 
modeler must have a picture of the strengths and weaknesses 
of the variety of force fields that are available in order to  
make a proper choice. 

3.2. Searching Configuration Space 
and Generating an Ensemble 

Once the molecular model and force field V(r) have been 
chosen, a method to search configuration space for configu- 
rations with low energy V(r) has to be selected. Various 
methods are available, each with their particular strength 
and weakness, which depend on 
- the form and type of the interaction energy function V(r), 
- the number of degrees of freedom (size of the system), 
- the type of degrees of freedom, viz. Cartesian coordinates 

versus other coordinates (e.g. bond lengths, bond angles, 
torsional angles plus center of mass coordinates of a mol- 
ecule). 

3.2.1. Systematic Search Methods 

If the molecular system contains only a small number of 
degrees of freedom (coordinates) and if V(r) does not have 
too many (relevant) minima upon variation of the degrees of 
freedom, it is possible to systematically scan the complete 
configuration space of the system. For example, one can 
describe conformations of n-alkanes in terms of C-C-C-C 
torsional angles, each of which has three conformational 
minima, trans ( O O ) ,  gauche' (120") and gauche-( - 120"). To 
find the lowest energy conformation of n-decane (seven tor- 
sional angles) one would have to compute V(r)  for 3' = 21 87 
combinations of torsional angles. The relative weight of the 
different conformations in the ensemble representing this 
molecule a t  temperature T is given by the Boltzmann factor 
(36). 

The computing effort required by a systematic search of 
the degrees of freedom of a system grows exponentially with 
their number. Only very small molecular systems can be 
treated by systematic search methods.[79* The number of 
degrees of freedom that still can be handled within a reason- 
able computing time strongly depends on the complexity of 
the function V(r),  that is, the time required to compute V(v)  
for each configuration. A possibility for speeding up the 
calculation is to  split the selection of low V(r )  configurations 
into different stages. In a first stage a simplified low comput- 
ing cost energy function VSimple(r) is used to quickly discard 
high Vsimple(i) configurations. In a second stage the complete 
V(r )  is only to be evaluated for the remaining configurations. 
This type of filtering procedure has been used to predict the 
loop structure in proteins[*'] and to  predict the stable con- 
formation of small peptides (five amino acid residues)!**] for 
example. The basic problem of filtering using simplified 
forms of V(r )  is to ensure that the simplified Vsimple(r) is a 
correct projection of the complete function V ( r ) :  when 
Vs,mp,e(r) is large, V ( v )  should also be large, otherwise a con- 
figuration with low energy V(r )  might be discarded in the 
first stage due to  a high energy Vsimpl,(r). 

3.2.2. Random Search Methods 

If a system contains too many degrees of freedom, 
straightforward scanning of the complete configuration 
space is impossible. In that case a collection of configura- 
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tions can be generated by random sampling. Such a collec- 
tion becomes an ensemble of configurations when each con- 
figuration is given its Boltzmann factor [cf. Eq. (36)] as 
weight factor in the collection. Two types of random search 
methods can be distinguished : 
- Monte Carlo methods, in which a sequence of configura- 

tions is generated by an algorithm which ensures that the 
occurrence of configurations is proportional to their 
Boltzmann factors [Eq. (36)]. 

- Other methods which produce an arbitrary (non-Boltz- 
mann) collection of configurations, which can be trans- 
formed into a Boltzmann ensemble by applying the weight 
factors from Equation (36). 

3.2.2.1. Monte Carlo Sirnulalion 

The Monte Carlo (MC) simulation procedure by which a 
(canonical) ensemble is produced consists of the following 
steps. 
1.  Given a starting configuration r, a new configuration 

rs+ = r, + Ar is generated by random displacement of 
one (or more) atoms. The random displacements Ar 
should be such that in the limit of a large number of 
successive displacements the available Cartesian space 
of all atoms is uniformly sampled. This does not mean 
that the actual sampling must be carried out in Cartesian 
space. It can be done, e.g., in internal coordinate space 
(r, 0,  cp), but since the equivalent volume element is 
r2sin 0 drdodcp, the sampling in internal coordinate space 
must be non-uniform in order to  produce a uniform sam- 
pling in terms of Cartesian coordinates. 

2. The newly generated configuration r,+ is either accepted 
or rejected on the basis of an energy criterion involving 
the change AE = V(r,+ - V(r,) of the potential energy 
with respect to the previous Configuration. The new con- 
figuration is accepted when AE < 0, or if AE > 0 when 
e-A"'kBT > R, where R is a random number taken from a 
uniform distribution over the interval (0,l). 
Upon acceptance, the new configuration is counted and 
used as a starting point for the next random displacement. 
If the criteria are not met, the new configuration r,, is 
rejected. This implies that the previous configuration r, is 
counted again and used as a starting point for another 
random displacement. 

It is relatively easy to  understand that this procedure will 
generate a Boltzmann ensemble. We consider two configu- 
rations r1 and r2 with energies El = V ( r , )  < V(r , )  = 

E 2 .  The probability of stepping from configuration r2 
to rI equals 1, the reverse step has a probability 
exp( - ( E ,  - E,)/k,T) .  When the populations p 1  and p 2  of 
the two configurations are in equilibrium, one has detailed 
balance conditions (37) or (38). 

Each configuration occurs with a probability proportional 
to its Boltzmann factor [Eq. (36)J. 

The advantage of this (Metropolis) Monte Carlo or Boltz- 
mann sampling over random sampling is that most sampled 

configurations are relevant (low energy), while with random 
sampling much computational effort is likely to be spent on 
irrelevant (high energy) configurations. In order to obtain 
high computational efficiency, one would like to combine a 
large (random) step size with a high acceptance ratio. This is 
possible when applying M C  techniques to  simulate simple 
atomic or molecular liquids.C6] However, for complex sys- 
tems involving many covalently bound atoms, a reasonable 
acceptance ratio can only be obtained for very small step 
size.[831 This is due to the fact that a random displacement 
will inevitably generate a very high bond energy of the bonds 
of the displaced atom. This makes M C  methods rather in- 
efficient for (macro)molecular systems. 

3.2.2.2. Distance Geometry Methods 

Distance geometry (DG) is a general method for convert- 
ing a set of bounds on distances between atoms into a config- 
uration of these atoms that is consistent with these bounds. 
The emergence of 2D-NMR techniques has spurred a re- 
newed interest in techniques to  obtain three-dimensional 
molecular structures from atom-atom distance informa- 
t i ~ n . [ ' ~ - ' ~ ]  The DG method is also applied in pharma- 
cophore modelingrs7] or enzyme substrate docking [.I M. 
Blaney, private communication] to  generate a collection of 
ligand structures compatible with a set of atom -atom dis- 
tance bounds. 

In distance geometry a molecular structure is described in 
terms of the set of all pairwise interatomic distances, which 
can be written in the form of a so-called (symmetric) distance 
matrix. By entering maximum distances between atoms of 
pairs in the upper right-hand triangle, and minimum dis- 
tances in the lower left-hand triangle of the distance matrix 
it becomes a distance bounds matrix. Such a matrix describes 
the complete configuration space accessible to  the molecule 
within the specified bounds. In a distance geometry calcula- 
tion a set of random configurations is generated by choosing 
atom-atom distances a t  random within the specified bounds, 
and subsequently converting the resulting distance matrix 
into a structure in three-dimensional Cartesian space using a 
so-called embedding a l g ~ r i t h m . [ * ~ - ' ~ ]  

The DG method is a powerful method for generating a set 
of configurations compatible with a set of atom-atom dis- 
tances, but also has a number of limitations. It is not possible 
to  apply an energy function V(r) like Equation ( 1 )  in a DG 
calculation. The energy function has to be converted into a 
function of atom-atom distances only, and subsequently it 
must be simplified to  a set of bounds on these distances, by 
which procedure much of the information present in V(r)  will 
be lost. As a consequence the DG method cannot properly 
handle solvent configurations, since a limited-distance de- 
scription of a liquid lacks the ability to give proper statistical 
weight to  the great variety of possible configurations. An- 
other problem is the characterization of the distribution of 
generated three-dimensional configurations. Since the con- 
version from distance space into three-dimensional Cartesian 
space is non-linear, a uniform sampling of distances between 
the lower and upper bounds will certainly not produce 
a set of configurations uniformly distributed in Cartesian 
space. 
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3.2.2.3. Other Random Search Techniques 

There exist infinitely many ways for generating a set of 
molecular configurations in a random manner. Whether the 
set of generated configurations may be considered to form 
an ensemble that can be used for statistical mechanical eval- 
uation of quantities will depend on the sampling properties 
of the method that is used. It should sample the important 
(low energy) regions of configuration space and the configu- 
rations should occur according to their Boltzmann weight 
factors. Otherwise the set of configurations can only be 
viewed as such, not as an ensemble representative of the state 
of the system that is considered. 

3.2.3. Dynamic Simulation Methods 

Another way to generate an ensemble of configurations is 
to apply Nature's laws of motion for the atoms of a molecu- 
lar system. This has the additional advantage that dynamical 
information about the system is obtained as well. The two 
major simulation techniques of this type are Molecular Dy- 
namics (MD), in which Newton's equations of motion are 
integrated over time, and Stochastic Dynamics (SD), in 
which the Langevin equation of motion for Brownian mo- 
tion is integrated over time. 

3.2.3.1. Molecular Dynamics Simulation 

In the Molecular Dynamics (MD) method a trajectory 
(configurations as a function of time) of the molecular sys- 
tem is generated by simultaneous integration of Newton's 
equations of motion (39) and (40) for all the atoms in the 

d2ri(t)/dt2 = m;' F, (39) 

6 = - a V(r,, . . . rN)/ari (40) 

system. The force on atom i is denoted by 6 and time is 
denoted by t .  MD simulation requires calculation of the 
gradient of the potential energy V(r), which therefore must 
be a differentiable function of the atomic coordinates ri. The 
integration of Equation (39) is performed in small time steps 
At, typically 1-10 fs for molecular systems. Static equilibri- 
um quantities can be obtained by averaging over the trajec- 
tory, which must be of sufficient length to form a representa- 
tive ensemble of the state of the system. In addition, dynamic 
information can be extracted. Another asset of MD simula- 
tion is that non-equilibrium properties can be efficiently 
studied by keeping the system in a steady non-equilibrium 
state, as is discussed in Section 5.4. Viewed as a technique to 
search configuration space, the power of MD lies in the fact 
that the kinetic energy present in the system allows it to 
surmount energy barriers that are of order of k,  Tper degree 
of freedom. By raising the temperature T a larger part of 
conformation space can be searched, as has been shown by 
DiNola et a1.,'881 who generated a series of different confor- 
mations of the hormone somatostatin by applying MD at 
T = 600 K and at 1200 K. At the elevated temperature the 
total energy and potential energy are monitored for conspic- 
uous fluctuations which may signal a possibly significant 
conformational change. When minima in the total energy 
occur, the system is cooled down and equilibrated at normal 

temperature (300 K). In this way different conformations 
with comparable free energy were obtained. We note how- 
ever that the search at elevated temperature favors selection 
of higher entropy conformations. 

Searching conformation space by MD is expected to be 
efficient for molecules up to about 100 atoms. For larger 
molecules, which may and are likely to show a particular 
topological fold, MD methods will not be able to generate 
major topological rearrangements. Even when the barriers 
separating two topologically different low energy regions of 
conformation space are of the order of k,T, the time needed 
for traversing them may be much too long to be covered in 
a MD simulation of 10-100 ps. 

3.2.3.2. Stochastic Dynamics Simulation 

The method of stochastic dynamics (SD) is an extension of 
MD. A trajectory of the molecular system is generated by 
integration of the stochastic Langevin equation of motion 
(41 1. 

d2r,(t)/dt2 = m,-' F, + m;'R,  - y,dr,(t)/dt (41) 

Two terms are added to Equation (39), a stochastic force 
Ri and a frictional force proportional to a friction coefficient 
y , .  The stochastic term introduces energy, the frictional term 
removes (kinetic) energy from the system, the condition for 
zero energy loss being that given in Equation (42), where 

qer is the reference temperature of the system. 
SD can be applied to establish a coupling of the individual 

atom motion to a heat bath,[891 or to mimic a solvent ef- 
fect.lgO. In the latter case the stochastic term represents 
collisions of solute atoms with solvent molecules and the 
frictional term represents the drag exerted by the solvent on 
the solute atom motion. An introduction to SD simulation 
techniques is given in Refs. [90, 921. 

3.2.4. Other Search Methods 

There exists a variety of other methods for searching con- 
figuration space which are variants of the basic types dis- 
cussed in the previous subsections. 

The method of simulated annealing[931 is a MC or a MD 
simulation in which the temperature is gradually lowered to 
OK. In this way the system generally ends up in a lower 
energy state than when an ordinary gradient energy minimiz- 
er is used. 

In a MD simulation the atomic velocities are large when 
the system explores the low energy regions of the potentiaI 
energy function V(r), and small when it crosses barriers at 
higher energy. For an efficient searching of configuration 
space one would like to invert this behavior: the atoms 
should move slowly in the valleys of V(r). A search algorithm 
developed along this line seems to perform well for certain 
systems.1941 Within the framework of MD the ability of 
atoms to cross barriers can be greatly enhanced by keeping 
their kinetic energy nearly constant by a tight coupling to a 
heat bath. 

1006 Angew. Chem. Int Ed. Engl. 29 (1990) 992-1023 



Another possibility is the combination of different tech- 
niques; Monte Carlo simulation, gradient minimization, etc. 
in one computational scheme.195,961 

3.2.5. Summary 

The various methods for searching configuration space 
can be classified as follows: 
A. Systematic search methods, which scan the complete 

configuration space of the molecular system. 
B. Methods which aim at generating a representative set of 

configurations. These may be divided into two types. 
1. Non-step methods, such as the DG method, which 

generate a (at least in principle) uncorrelated series of 
random configurations. 

2. Step methods, such as MC, MD and SD, which gener- 
ate a new configuration from the previous one. 

Most search techniques fall in this class. They can be dis- 
tinguished by the way the step direction and the step size are 
chosen : 
- according to the gradient -oV( r ) ,  
- according to a memory of the path followed so far, 

or 
- at random. 

For example, in the MC method, the step direction is 
chosen at random, the actual step size is determined by the 
change in energy AE (gradient) and a random element in case 
AE > 0. In a MD simulation both step size and direction are 
determined by the force (gradient) and the velocity (memo- 
ry). In general a search algorithm will make a step which is 
a linear combination of the gradient, previous steps (memo- 
ry) and a random contribution. It will depend on the energy 
surface V(r)  which is the optimal linear combination of these 
three ingredients. 

Another classification of algorithms which generate a set 
of configurations is whether they produce an ensemble or 
not. Of the schemes discussed above only MC, MD and SD 
generate a Boltzmann weighted ensemble. 

3.3. Boundary Conditions 

When simulating a system of finite size, some thought 
must be given to the way the boundary of the system will be 
treated. The simplest choice is the vacuum boundary condi- 
tion. When simulating a liquid, solution or solid rather than 
a molecule in the gas phase, it is common practice to mini- 
mize edge or wall effects by the application of periodic 
boundary conditions. If the irregularity of the system is in- 
compatible with periodicity, edge or wall effects may be re- 
duced by treating part of the system as an extended wall 
region in which the motion of the atoms is partially restrict- 
ed. 

3.3.1. Vacuum Boundary Condition 

Simulation of a molecuIar system in vacuo, that is, with- 
out any wall or boundary, corresponds to the gas phase at 
zero pressure. When the vacuum boundary is used for a solid 
or a molecule in solution, properties of atoms near or at the 
surface of the system will be distorted.Ig7] The vacuum 
boundary condition may also distort the shape of a (non- 

spherical) molecule, since it generally tends to minimize the 
surface area. Moreover, the shielding effect of a solvent with 
high dielectric permittivity, like water, on the electric interac- 
tion between charges or dipoles in a molecule is lacking in 
vacuo. We note that the water molecules do not need to be 
positioned between the charges or dipoles in order to pro- 
duce a screening of the interaction between these. Therefore, 
simulation of a charged extended molecule like DNA in vac- 
uo is a precarious undertaking. Solvation of DNA in a 
sphere with solvent molecules will shift the boundary effects 
from the DNA-vacuum interface to the water-vacuum in- 
terface and so improve the treatment of the DNA.Ig8’ The 
best results in vacuo are obtained for relatively large globu- 
lar molecular systems. 

3.3.2. Periodic Boundary Conditions 

The classical way to minimize edge effects in a finite sys- 
tem is to use periodic boundary conditions. The atoms of the 
system that is to be simulated are put into a cubic, or more 
generally into any periodically space-filling shaped box, 
which is treated as if it is surrounded by 26 (= 33 - 13) 
identical translated (over distances k Rbox in the x-, y-, z-di- 
rections) images of itself. The next layer of neighbor images 
of the central computational box contains 53 - 33 - l 3  = 

98 boxes, and so on. When an infinite lattice sum of the 
atomic interactions is to be performed (Sections 3.1.3.1 1 - 
13), the interactions of an atom in the central computational 
box with a11 its periodic images are computed. In most cases 
this is not desirable. Then only interactions with nearest 
neighbors are taken into account. The black atom in the 
central computational box in Figure 10a will only interact 
with atoms or images of atoms that lie within the dashed line 
(nearest image, NI, or minimum image, MI, approximation). 
The anisotropy of the interaction due to the cubic shape of 
the nearest image box can be avoided by the application of 
a spherical cut-off (radius Rc). The periodic boundary condi- 
tion affects not only the computation of the forces, but also 
the positions of the atoms. It is common practice (though not 
necessary) to keep the atoms together, that is, in the central 
computational box: when an atom leaves the central box on 
one side, it enters it with identical velocity at the opposite 
side at the translated image position. 

Application of periodic boundary conditions means that 
in fact a crystal is simulated. For a liquid or solution the 
periodicity is an artifact of the computation, so the effects 
should be minimized. An atom should not simultaneously 
interact with another atom and a periodic image of that 
atom. Consequently the length Rbox of the edge of the period- 
ic box should exceed twice the cut-off radius R,. Possible 
distorting effects of the periodic boundary loz1 

may be traced by simulation of a system in differently shaped 
boxes (see below) of different size. 

When simulating a spherical solute, use of a more spheri- 
cally shaped computational box instead of a cubic or rectan- 
gular one may considerably reduce the number of solvent 
molecules that is needed to fill the remaining (after insertion 
of the solute) empty space in the box. A more spherically 
shaped space-filling periodic box is a truncated octahedron, 
(Fig. 10b).1103] It is obtained by cutting off the corners of a 
cube in such a way that the symmetry of the cube is main- 
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Fig. 10. Types of boundary conditions: a) cubic periodic, b) troncated octahe- 
dron periodic, c) spherical extended wall region, d) flat extended wall region for 
a gas-solid simulation. 

tained, and such that the distance between opposite hexago- 
nal planes equals $& times the distance between opposite 
square planes. In this way half the volume of the original 
cube is cut away. The ratio of the inscribed-sphere volume to 
total volume of the truncated octahedron is 0.68, whereas it 
is only 0.52 for a cube. Use of a truncated octahedron instead 
of a rectangular periodic box may yield a sizeable reduction 
of the system to be simulated. For example, the small protein 
bovine pancreatic trypsin inhibitor (BPTI) (58 amino acid 
residues) consists of 568 atoms (hydrogen atoms bound to 
carbons excluded), and its dimensions are 28 A by 28 A by 
40 8,. If we approximate it by a sphere of radius 16 A and put 
it into a cube with a minimum solvent layer thickness of 6 8, 
to the walfs, about 2300 water molecules (6900 atoms) are 
needed to fill the non-protein part of the cube of volume 
[2 x (16 + 6)13 A3. To fill the non-protein part of a truncated 
octahedron of volume t[4 x (16 + 6)/&13 A3 takes about 
1600 water molecules (4800 atoms). This means a reduction 
of the system size by at least one quarter of the number of 
atoms. 

3.3.3. Extended Wall Region Boundary Condition 

If a molecular system is irregular, i.e. not nearly transla- 
tionally periodic, periodic boundary conditions cannot be 
applied. In this case the distorting effect of the vacuum out- 
side the molecular system may be reduced by designating a 
layer of atoms of the system to be an extended wall region, 
in which the motion of the atoms is restrained in order to 
avoid the deforming influence of the nearby vacuum 
(Fig. lOc, d). The atoms in the extended wall region can be 
kept fixed Is') or harmonically restrained to stationary posi- 
tions. Their motion may be coupled to a heat bath, e.g. by 

applying stochastic dynamics[sg' in order to account for ex- 
change of energy with the surroundings. In any case the type 
of force applied to these atoms should be chosen such that 
their motion in the finite system resembles as closely as pos- 
sible the true motion in an infinite system. The extended wall 
region forms a buffer between the fully unrestrained part of 
the system and the (unrealistic) vacuum surrounding it. 

This extended wall region technique has been applied in 
the simulation of s o l i d ~ , [ ' ~ ~ l  'O6I and pro- 
tein~.[' '~. 108] Although the technique yields considerable 
savings in computing time, it should be carefully analyzed 
how far the restraining of the motion of the atoms in the wall 
region will affect the motion of the freely simulated atoms in 
the system. 

3.4. Different Types of Molecular Dynamics 

When Newton's equations of motion (39) and (40) are 
integrated the total energy is conserved (adiabatic system) 
and if the volume is held constant the simulation will gener- 
ate a microcanonical ensemble. For various reasons this is 
not very convenient and a variety of approaches has ap- 
peared in the literature to yield a type of dynamics in which 
temperature and pressure are independent variables rather 
than derived properties. When MD is performed in non- 
equilibrium situations in order to study irreversible process- 
es, catalytic events or transport properties, the need to im- 
press external constraints or restraints on the system is 
apparent. In such cases the temperature should be controlled 
as well in order to absorb the dissipative heat produced by 
the irreversible process. But also in equilibrium simulations 
the automatic control of temperature and pressure as inde- 
pendent variables is very convenient. Slow temperature 
drifts that are an unavoidable result of force truncation er- 
rors are corrected, while also rapid transitions to new desired 
conditions of temperature and pressure are more easily ac- 
complished. 

3.4.1. Constant- Temperature Molecular Dynamics 

Several methods for performing MD at constant tempera- 
ture have been proposed, ranging from ad-hoc rescaling of 
atomic velocities in order to adjust the temperature, to con- 
sistent formulation in terms of modified Lagrangian equa- 
tions of motion that force the dynamics to follow the desired 
temperature constraint. Different types of methods can be 
distinguished. 

1. Constraint methods, in which the current temperature 
T(t) at time point t is exactly equal to the desired reference 
temperature To. This can be achieved by rescaling the veloc- 
ities at each MD time stepIZol by a factor [To/T(t)]"2, where 
the temperature T(t) is defined in terms of the kinetic energy 
through equipartition IEq. (43)]. The number of degrees of 
freedom in the system is Ndf. 

(43) 
N 1  1 

Ekin(t) = C -mi$(t) = - N d f k , T ( t )  i=12 2 

The same result can be obtained in a more elegant way by 
such a modification of the equations of motion (39);"'- ' ' 
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that the kinetic energy instead of the total energy becomes a 
constant of motion. This method has two disadvantages. 
First, numerical inaccuracy of the algorithm may produce a 
drift in temperature that is not stabilized, since the reference 
temperature To does not appear in the equations to be inte- 
grated. Second, although the system is modeled by a Hamil- 
tonian, this Hamiltonian does not represent a physical sys- 
tem, for which fluctuations in the kinetic energy are 
characteristic. In practical applications which are aimed at 
realistically simulating a physical system, the use of a non- 
physical Hamiltonian is questionable, even though mathe- 
matically consistent equations of motion are obtained. 

2. Extended system methods,[' ''I in which an extra degree 
of freedom s representing a heat bath is added to the atomic 
degrees of freedom of the molecular system. A kinetic and a 
potential energy term invoking this extra degree of freedom 
are added to the Hamiltonian and the simulation is carried 
out for the Ndf+ 1 degrees of freedom of this extended sys- 
tem. Due to the presence of a kinetic term +,(ds/dt)2 in the 
Hamiltonian, energy is flowing dynamically from the heat 
bath to the system and back, the speed being controlled by 
the inertia parameter m,. A disadvantage of this type of 
second-order coupling to a heat bath is the occurrence of 
spurious energy oscillations, the period of which depends on 
the value of the adjustable coupling parameter m,. 
3. Weak coupling methods," 131 in which the atomic equa- 
tions of motion are modified such that the net result on the 
system is a first-order relaxation of the temperature towards 
the reference value To [Eq. (44)]. 

dT(t)/dt = 7;' [To- T(t)] (44) 

The kinetic energy can be changed by AEkim in a M D  time 
step At by scaling all atomic velocities V, with a factor I .  
Using (43) we get (45). 

AEkin = (1' - l)$NdfkB T(t)  (45) 

If the heat capacity per degree of freedom of the system is 
denoted by ctf the change in energy [Eq. (45)] leads to a 

AT = [Ndf~$f]-l AEkin 

change in temperature [Eq. (46)], which should be equal to 
AT as determined by (44). Solving Equations (44)-(46) for 
I we obtain equation (47). 

I = [I + ~ ~ ~ ( k , / 2 ) - ' A t z ~ ' ( T ~ / T ( t ) - l ) ] " '  (47) 

The heat capacity per degree of freedom ct f  may not be 
accurately known for the system. This has no consequence 
for the dynamics since the temperature relaxation time zT is 
an adjustable parameter. This aperiodic coupling to a heat 
bath through a first-order process has the advantage over the 
extended system methods that the response to temperature 
changes is non-oscillatory and that it is rather easy to imple- 
ment through a simple velocity scaling using Equation (47). 
The coupling can be chosen sufficiently weak (sufficiently 
large T ~ )  to avoid disturbance of the system and sufficiently 
strong (small zT) to achieve the desired result. 

4. Stochastic methods, in which the individual atomic ve- 
locities 5, are changed stochastically. Andemen" 14] proposed 
a Maxwellian re-thermalization procedure by stochastic col- 
lisions, in which the mean time between collisions plays the 
role of adjustable parameter determining the strength of the 
coupling to the heat bath. Heyes['lS1 has suggested a Monte 
Carlo type technique for selection of new velocities. Oth- 
ers1116] used the Langevin equation (41) to achieve the cou- 
pling to a heat bath, the strength of the coupling being deter- 
mined by the value of the atomic friction coefficients yi. 

3.4.2. Constant-Pressure Molecular Dynamics 

For an isotropic system the pressure is a scalar defined by 
Equation (48), where V denotes the volume of the computa- 
tional box and the virial E is defined as in Equation (49). 

P = 2/(3 V )  [Ekin - 4 

Here, rij = ri - r, and E j  is the force on atom i due to atom 
j .  For molecular systems, forces within a molecule may be 
omitted together with kinetic energy contributions of in- 
tramolecular degrees of freedom. A pressure change can be 
achieved by scaling of the volume of the box and by changing 
the virial through a scaling of interatomic distances. 

The various methods for carrying out MD at constant 
pressure are based on the same principles as the constant 
temperature scheme with the role of the temperature played 
by the pressure and the role of the atomic velocities played 
by the atomic positions. The following methods can be dis- 
tinguished. 

1. Constraint methods," "I in which the equations of mo- 
tion are modified such that the pressure instead of the vol- 
ume becomes a constant of motion. This type of method has 
the same two disadvantages as its constant temperature 
counterpart. 

2. Extendedsystem methods,["4. 1 1 8 - 1 2 1 1  in ' which an ex- 
tra degree of freedom V,  the volume of the box, is added to 
the atomic degrees of freedom of the system. A kinetic ener- 
gy term, ;m,(dV/dt)' and a potential energy term, PV, in- 
volving the extra degree of freedom are added to the Hamil- 
tonian, and the simulation is carried out for the Nd,+l 
degrees of freedom of the extended system. The rate of vol- 
ume change is governed by the inertia parameter my. A dis- 
advantage of this second-order coupling method is the oc- 
currence of spurious volume oscillations, the period of which 
depends on the size of the adjustable parameter m,. 

3. Weak coupling methods," 1 3 ]  in which the atomic equa- 
tions of motion are modified such that the net result on the 
system is a first-order relaxation of the pressure towards a 
reference value Po [Eq. ( S O ) ] .  

Scaling the atomic coordinates ri and the edges of the com- 
putational box by a factor p leads to a volume change 
[ a .  (5111. 
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A V  = ( p 3  - l ) V  (51) 

The pressure change APdue to this change in volume is given 
by Equation (52), where the isothermal compressibility of 

the system is denoted by &. Solving Equations (50)-(52) for 
p we get Equation (53). 

p = [I - /lTAtZ~'(Po-P(t))J1'3 (53)  

Since the pressure relaxation time zP is an adjustable param- 
eter, an accurate value for the compressibility of the system 
is not required. This first-order pressure coupling method 
has advantages corresponding to those of the weak tempera- 
ture coupling method [cf. Eqs. (44)-(47)]. The expressions 
(48)-(53) can easily be modified to  apply to  a general aniso- 
tropic triclinic system. Virial, kinetic energy, pressure, and 
the scaling factor p will become Cartesian tensors, and the 
volume V becomes the determinant of the matrix formed by 
the vectors a, b and c representing the edges of the computa- 
tional box. 

4. Stochastic methods for constant-pressure M D  have not 
yet been proposed. They would involve random changes of 
the box volume. 

3.5. Algorithms for Molecular and Stochastic Dynamics 

3.5.1. Integration Schemes for Molecular Dynamics 

Newton's equation of motion (39), a second-order differ- 
ential equation, can be written as two first-order differential 
equations (54) and ( 5 5 )  for the particle positions ri(t)  and 

du;(t)]dt = m; ' F,({r;  (t)}) (54) 

dr;(t)/dt = u i ( t )  (55)  

velocities ui(t) respectively. The forces Fi are obtained from 
the potential energy function through Equation (40); they 
therefore depend on the configuration { r l ( t ) }  of the system. 
A simple algorithm for integration of Equations (54) and 
( 5 5 )  in small time steps At is obtained as follows. 

Taylor expansion of q ( t )  a t  time point t = t ,  yields the 
expression (56) when Equation (54) is used. 

U i ( t ,  + At/2) = U, (t,) + d~, /d t ] ,~At /2  
+ d2ui(t)/dt2]tm(At/2)2/2! + O(At3) 

+ d ' ~ , ( t ) / d t ~ ] , ~ ( A t / 2 ) ~ / 2 !  + O(At3) 

U i ( t ,  - At/2) = ui (t,) - dui/dt],"At/2 

u, ( t ,  + At/2) = u , ( t ,  - At/2) + m,- 'Fz({r , ( tn)} )At  + O(At3) 

(56) 

Using the same procedure for Taylor expansions of r , ( t )  at 
time point t = t, + At/2 and using Equation ( 5 5 )  we obtain 
Equation (57). 

r,(tn + At) = r,(t ,)  + u,( t ,  + At/2)At + O(Af3). (57) 

1010 

Equations (56)-(57) form the so-called leap-frog scheme. 
Its name is illustrated in Figure 1 I .  It is one of the most 
accurate, stable, and yet simple and efficient algorithms 
available for molecular dynamics of fluid-like systems. Our 

positions 

velocit ies 

forces 

t ime 

stochastic 

integrals 

Fig. 11. The leap-frog scheme for integration of Newton's equations of motion 
and Langevin's equations of motion. 

preference for using the leap-frog scheme instead of other 
algorithms such as those of Runge-Kufta,['221 Gear,['z31 Ver- 
let['241 or Beeman['251 is a result of performance evalua- 
tions[z8, 69,126, 

1. Number of force evaluations per time step. By far the 
most expensive part of a M D  simulation is the force calcula- 
tion [cf. Eq. (40)], which therefore should not be carried out 
more than once per integration time step At. This rules out 
algorithms of the Runge-Kutta type. 

2. Order oj the algorithm. It can be shownr69*1271 that the 
leap-frog, Verlet and Beeman algorithms generate exactly 
the same trajectory, and are of 3rd-order accuracy in the time 
step At. The application of higher-order, more accurate al- 
gorithms like those of Gear,['231 which involve the use of 
higher-order derivatives of the function to be integrated, is of 
no use as long as this function is a non-harmonic, noisy one. 
For  example, in simulations of polar liquids or macromolec- 
ular solutions noise due to the cut-off applied to  the long- 
range Coulomb forces prohibits an increase in accuracy be- 
yond 3rd order.['26] However, if the highest-frequency 
motions in the molecular system are highly harmonic, as in 
solids, the higher-order function derivative will possess pre- 
dictive power, which may lead to improved accuracy by ap- 
plying higher-order algorithms. Algorithms that are of lower 
than third order are not efficient in the M D  of molecular 
systems.[' "I This is because molecular potential energy 
functions V generally have positive second derivatives, re- 
quiring third- or higher-order algorithms. 

3. Representation of the algorithm. The much used 
Verlet algorithm can be obtained from the leap-frog scheme 
[(56)-(57)] by eliminating the velocities u,(t,+At/2) and 
ui(t,-At/2) from Equations (56) and (57) and replacement 
of t, by t,-At in Equation (57). 

and of the following considerations. 

The atomic velocity does not occur explicitly in this al- 
gorithm, which makes a coupling of the system to a heat bath 
by velocity scaling as described in Section 3.4 impossible. 
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t , + A t / Z  

x(t,; At/2) J [I ~ e-)'~(f~+At'2-t') ] R,(t')dt' (66) 4. Memory and computational requirements. In some stud- 
ies the Beeman algorithm [Eqs. (59) and (60)] is advocat- t" 

r ,(t,  + At) = ri(t,) + u,(t,)At When yi goes to zero, Equation (65) reduces to Equation 

+ m;' [4E(t,) - F,(tn - At)] (At)2/6 (59) (57). 
When using the SD leap-frog algorithm (63-66) it must be 

q ( t ,  + At) = q(t ,)  + m,Y1[2F,(t, + At) + 5F,( tn)  noted that Vi(t,; - At/2) is correlated with Xi(tm - At/2; 
At/2), since they are different integrals of Ri(t) over the time 
interval (tn-At/2; t,) (see Fig. 8). The same observation 

- &(t, - At)] At/6 (60) 

ed.r441 Although Equations (59) and (60) are much more 
complicated than Equation (58) ,  the latter follows directly 
from the former: replace t ,  by [,-At in Equations (59) and 
(60), multiply the latter by At and subtract the former from 
it, and add the resulting equation to Equation (59). Reshuf- 
fling of terms then gives Equation (58). Since the Beeman, 
Verlet and leap-frog algorithms generate identical trajecto- 
ries, we prefer to use the latter because of its minimal com- 
puter memory storage and computational requirements. 

holds for Xi(t,+At/2; - At/2) and Vi(tn;At/2) [cf. Eqs. (65) 
and (63)]. These are different integrals of Ri(t) over the time 
interval (tz, t,+dt/2). This means that these correlated 
quantities must be sampled in a correlated manner,l' 281 

which makes the SD leap-frog algorithm more complicated 
than the MD one. 

Integration schemes for the generalized Langevin equa- 
tion involving time-dependent friction coefficients y i  can be 
found in Refs. [129, 1301. 

3.5.2. Integration Schemes for Stochastic Dynamics 
3.5.3. Application of Constraints in Molecular Dynamics _ _  

Langevin's equation of motion (41) differs from Newton's 
equation (54) by the occurrence of a stochastic force Ri(t) 
and a frictional force miyiui(t) [Eq. (61)]. 

In Section 3.4 methods to exactly constrain the tempera- 
ture and pressure of a molecular system were briefly men- 
tioned. Here, methods to constrain molecular bond lengths 
or bond angles in dynamic simulations will be discussed. 
They are used to save computing time. The length of the time 
step At in a MD or SD simulation is limited by highest 

dvi(t)/dt = m i '  F,({ri(t)}) + m;'Ri(t) - y , q ( t )  (61) 

The solution of this equation around = f n  is formulated in frequency (vmax) motions occurring in the system [Eq. (67)1. 

Equation (62). 
At < v;:~,',. (67) 

Since the stochastic properties of Ri(t') are given, the integral 
over Ri(r') can be obtained directly. The integral over the 
systematic force Fi(t') is, as in the previous section, obtained 
by expanding Fi(t') in a Taylor series around t = t ,  and omit- 
ting all terms beyond third order in At  in the positions, 
beyond second order in the velocities, and beyond second 
order in the forces. The SD equivalent of the leap-frog veloc- 
ity formula (56) then becomes:['281 

q ( t ,  + At/2) = q ( t ,  - At/2)e-Y2Af 
+ mi-'Fi(t,)[l - e-y*At]/(yiAt) 
+ F ( t n ;  At/2) ~ e-",At F(tn;  ~ At/2) (63) 

By freezing the generally uninteresting high-frequency inter- 
nal vibrations, such as bond-length or possibly bond-angle 
vibrations, v,,', is increased, which allows for a longer time 
step At. The application of constrained dynamics makes 
sense physically and computationally when 

1. the frequencies of the frozen (constrained) degrees of free- 
dom are (considerably) higher than those of the remain- 
ing ones, thereby allowing a (considerable) increase of At, 

2. the frozen degrees of freedom are only weakly coupled to 
the remaining ones, i.e. when the molecular motion is not 
significantly affected by application of constraints, 

3. so-called metric tensor e f fe~ts ' '~ ' ]  play a minor role, 
4. the algorithm by which the constraints are imposed on the 

molecular system does not require excessive mathematical 
or computational effort. 

In molecular simulations typically a factor of 3 in computer with 
.- 

time can be saved by application of constraints.[1261 The 
1,  application of constraints implies that the atoms move on a 

v(tn; At/2) = m ; 1 e - y . A t / 2 1 n + ~ e - - y . ( f . . - f ' ) R ,  ,( ')dt' (64) 

hypersurface in configuration space. While in the full Carte- 
sian configuration space each configuration has equal weight 
in the partition function, the weighting on the hypersurface 
will in general depend on its form. The metric tensor defining 
the hypersurface in terms of Cartesian coordinates will deter- 
mine these weights. Therefore, when simulating using con- 
straints, metric tensor corrections must be taken into ac- 
count. Their significance depends on the type of constraint. 
A discussion of metric tensor effects is given in Refs. [131, 
1321. 

When yi goes to zero, Equation (63) reduces to Equation 
(56). The SD equivalent of the leap-frog position formula 
(57) is obtained by integrating Equation (55) using the ex- 
pression (62) for the [Eqs. (65), (66)]. 

r, ( t ,  + At) = ri(t,) 

+ u ( t n  + At/2)AtIe+yzA"2 ~ e-Y'A"21/(YiAt) 
+ x(tn + At/2; At/2) - x(tn + At/2; - At/2) 

(65) 
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3.5.3.1. Classification of Methods 

Several methods exist for integrating the equations of mo- 
tion of a molecular system in the presence of constraints. 
They can be classified as follows: 
1. Formulation in terms of generalized coordinates. In this 

case the constrained degrees of freedom (e.g. bond 
lengths, bond angles) are treated as fixed parameters, not 
as degrees of freedom. For  example, a macromolecule 
may be modeled by only torsional angle degrees of free- 
dom, as is often done in static modeling studies. Two cases 
can be distinguished. 
a. When dealing with rigid molecules, center of mass co- 

ordinates and Euler angles can be used as degrees of 
freedom, leading to the Newton-Euler equations 
of rigid body motion. A variety of algorithms have 
been proposed for the integration of these equa- 

b. For the more general case offlexible molecules, espe- 
cially when the number of internal degrees of freedom 
becomes larger than a few, and when inertial terms are 
not neglected, it is a tedious task to write down explic- 
itly the appropriate equations of motion in generalized 
coordinates.[' 3 6 3  371 The reason is that the base vec- 
tors of the coordinate system become dependent on 
time, which has a number of unpleasant conse- 
quences.['361 So we think that the use of generalized 
coordinates, such as torsional angles, is highly unprac- 
tical for describing the dynamics of macromolecules. 

2. Formulation in terms of Cartesian coordinates. Two meth- 
ods are available for integrating the Cartesian equations 
of motion of flexible molecules subject to holonomic scle- 
ronomous constraints, that is, constraints that are only 
dependent on atomic coordinates, not on time. 
a. Matrix methods[1381 bear their name because they in- 

volve the (costly) inversion of a matrix of dimension 
equal to  the number of constraints. Thus, these meth- 
ods are not well suited for application to macromolec- 
ular systems. 

b. Iterative methods, like the so-called SHAKE meth- 
od," 381 are especially appropriate for macromolecules, 
since they treat the constraints in an iterative way. 

tions.[19. 133-1351 

3.5.3.2. Algorithms for  Constraint Dynamics in Cartesian 
Coordinates 

Molecular constraints have the form (68) for the case of 

N, constraints in a molecule consisting of N atoms. Bond- 
length and bond-angle constraints can be put in the form of 
distance constraints between atoms k ,  and k , ,  as in (69) 
where the constraint distance is given by dklk l .  

When applying Constraints in M D  or SD, the 3N equa- 
tions of motion (39) or (41) have to be integrated while 
satisfying the N ,  constraints. This can be accomplished by 
applying Lagrange's method of undetermined multipli- 
ers.[1221 A zero term (68) is added to  the potential energy 

function V in Equation (40), which yields (70) as the equa- 
tion of motion. 

The time-dependent multipliers L,(t) are determined such 
that the constraints G~ are satisfied. The physical interpreta- 
tion of Equation (70) becomes clear by rewriting it in terms 
of forces [Eq. (71)]: 

mid2ri(t)/dt2 = &(t)  + Gi(t) (71) 

The total unconstrained force F,(t)  derived from the po- 
tential energy function is the first term in Equation (70), 
while the constraint force Gi(t), which compensates the com- 
ponents of Fi(t) that act along the directions of the con- 
straints, is the second term. 

The leap-frog scheme [(56)-(57)] for integration of Equa- 
tion (71) becomes Equations (72) and (73). 

u,(t, + At/2) = q ( t ,  - At/2) + m,-'{F,(t,,) + G,(t,)}At (72) 

r,(t ,  + At) = ri(t,) + u i ( t ,  + At/2)At (73) 

Separating contributions from F,(t,) and Gi(t,) we find 

ri ( t ,  + At)  = ri + 6ri (74) 

with 

6ri = m;' G,(t,)(At)' (75) 

where ri are the positions after a M D  or S D  step disregarding 
all constraints, and 6vi are the positional corrections to be 
made as a result of the constraints. Using the definition of Gi 
we find 

or when using the explicit form (69) for a,: 

where the summation extends only over constraints involv- 
ing atom i. This implies that corrections due to the distance 
constraint between atoms i and j must be applied in the 
directions of the vector rij.  Corrections to ri and ri are in 
opposite directions and weighted by the inverse mass of 
atoms i a n d j ,  as is illustrated in Figure 12. Since the posi- 
tions r,(t,+At) must satisfy the constraints (68, 69) using 
(74) we have for each constraint: 

These form a set of N, quadratic equations from which the 
N, Lagrangian multipliers can be determined. After lin- 
earization of Equation (78) by neglecting the terms quadratic 
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2 -1 6rj =+2AkAf 6, 

Fig. 12. Application ofdistance constraints. Atomic coordinate resetting using 
Lagrangian multipliers %,. 

in A,, a set of linear equations is obtained. The above men- 
tioned matrix methods solve these by a matrix inversion.[1381 
The iterative methods solve them by treating all constraints 
in succession, and iterating this procedure until all con- 
straints are satisfied within a specific geometric tolerance. 

The so-called SHAKE method, which is much used, is of 
the iterative type." 381 Its application in various algorithms is 
denoted by Equation (79). This means that the positions 

SHAKE (r;(tn),  rj(t, + At), r i ( t ,  + At))  (79) 

r',(t, + At) resulting from a non-constraint time step will be 
reset to give the constrained positions r,(t,+At). When nec- 
essary the constraint forces can be determined from Equa- 
tion (80) and the constrained velocities from Equation (81). 

G&(fJ = m,[r,(t, + A t )  - r;(t ,  + At)J/(At)z (80) 

ui(t, + Atj2) = [r,( t ,  + At) - ri(tn)]/At 

3.5.3.3. Eff.;ct of the Application of Constraints 

The effect of constraining bond lengths and bond angles in 
molecular systems has been evaluated.[*26. 1391 It turns out 
that the application of bond-length constraints saves about 
a factor of 2 in computing effort when bonds to hydrogen 
atoms are constrained and about a factor of 3 when all cova- 
lent bonds are constrained. No evidence was found for a 
distortion of the physical properties by the rigidity of the 
bonds." 391 When the bond angles undergo limited variation, 
which is generally true for molecular systems, metric tensor 
corrections play an insignificant role when bond-length con- 
straints are applied." 3z1 

The use of bond-angle constraints is not allowed, since it 
considerably affects the molecular motion. Macromolecular 
flexibility and entropy are halved, and the number of tor- 
sional angle transitions is dramatically reduced.[139] More- 
over, it has been shown that in case of application of bond 
angle constraints metric tensor corrections, which are nearly 
impossible to  calculate for all but the smallest flexible 
molecules, are of significant size and may not be ignored.[13z1 
This means that M D  or SD of molecular systems should not 
be performed in torsional space while treating bond lengths 
and angles as fixed quantities. 

3.5.3.4. Disadvantages of the Application of Constraints 

The advantage of the application of bond-length con- 
straints is clear: a t  the expense of about 10% extra comput- 

ing time, longer, time steps At can be taken. When simulating 
macromolecular systems without constraints. a value of 
At = 0.5 fs is appropriate, whereas with bonds to hydrogen 
atoms constrained At = 1.0 fs, and with all bonds con- 
strained A f  = 2.0 fs is appropriate. So, a factor of 2 to 4 in 
computing effort is saved. 

Yet, the application of constraints also has its disadvan- 
tages. 

1. Convergence problems for  large planar groups. In prac- 
tice, procedures like the SHAKE method sometimes fail to 
converge to  a molecular configuration satisfying all con- 
straints. This is often due to the fact that the constraint 
forces act along the bond directions in the previous M D  step 
(Fig. 12). For a planar group of atoms the constraint forces 
will act along vectors in the plane. So, when the other forces, 
e.g. due to  charge repulsion, act orthogonally to the plane. it 
is nearly impossible for the constraint forces to counteract 
these, since they act orthogonally to each other. A solution 
to this problem has been proposed in Ref. [140], where virtu- 
al atoms lying outside the plane of the planar group are used 
to obtain constraint forces with sizeable components orthog- 
onal t o  the plane of the group of real atoms. The implemen- 
tation of this virtual atom technique would require definition 
of virtual atoms for each possible type of planar group. This 
makes this technique not very attractive for application in 
macromolecules. 

2. Free energy of creation or annihilation of atoms. When 
free energy differences are computed using the coupling pa- 
rameter approach, the application of constraints is a compli- 
cating factor. The Hamiltonian, or  the potential energy func- 
tion, is made a function of a coupling parameter i, which is 
smoothly changed in the course of a simulation in order to  
obtain the work done by the system over a reversible change 
of i.. The problem now is that a constrained bond length 
cannot be removed from the system as a smooth function of 
1. When computing the free energy of breaking a bond one 
faces the fact that the removal of a constraint is a discontin- 
uous process. Even when only the length of a bond is 
changed (not removed) as a function of L, computation of 
the free energy change due to the work done by the con- 
straint forces is not simple, as  is shown in Ref. [141]. 

3. Computational botrleneck for parallelization of' al- 
gorithms. The constraint forces are generally computed after 
the other forces have been calculated and an unconstrained 
integration time step is performed. This makes the applica- 
tion of constraints a computational bottleneck : all other 
computations have to  wait for its termination. Moreover, the 
most efficient methods for application of constraints, such as 
the SHAKE method, are of an iterative nature which makes 
them unsuitable for parallelization on a computer. 

4. Physical model of frozen bonds. Although no significant 
effects due to freezing of bonds have been observed for 
molecular systems in equilibrium, it remains to be seen 
whether in non-equilibrium situations the finite flexibility of 
bonds may play a role in the dynamics, e.g. as an energy 
reservoir. 

3.5.4. Multiple Time Step Algorithms 

An alternative to  the application of bond length con- 
straints is the use of a multiple time step (MTS) integration 
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algorithm.[6. 14'] The length of the integration time step is 
limited by the oscillation or relaxation time of the forces [see 
Eq. (67)] .  In a molecular system three frequency ranges can 
be distinguished, as shown in Table 5 :  high-frequency bond- 
stretching forces Fhf, low-frequency long-range Coulomb 
forces F", and the remaining intermediate frequency forces 
F". The contribution of the different forces to the atomic 
trajectories may be integrated using different time steps. An 
example is the twin range method discussed in Section 
3.1.3.4, in which the long-range Coulomb force is kept con- 
stant during k time steps At ,  where k lies in the range 5- 100. 

Table 5. Various relaxation times in macromolecular systems, and force components 
to be used in multiple time step algorithms. 

Type of force Auoroxl- Force .. 
mate oscil- lation or Application Update Size of 

relaxation at step at step force 
to be 
applied time (fs) n' = 0,1.2,. . . 

1. high frequency: Fhf 

2. intermediate frequency: F" 
bond-angle bending 
dihedral angle torsion 
van der Waals 
shortrange Coulomb 

F" 
long-range Coulomb 

covalent bond stretching 10 1.+n'41' ~ , + n ' A t '  F:' 

40 I ,  + n'm41' r, + n'mAr' mFf' 

1000 t.+n'mAr' t,+n'mk41' mFf' 

3. low frequency: 

A multiple time step scheme could also be applied to the 
bond-stretching forces.[1431 The conventional MD or SD 
time step Af is subdivided into m (m = odd) smaller substeps 
At', so At = mAt'. The covalent bond forces Fhf are evaluat- 
ed at each time step t,, + n'dt', with n' = 0,1,2,. . . When n' is 
a multiple of m, the other forces F" + F" are applied, but 
multiplied by a factor m in order to compensate for their 
omission at the substeps. Application of this MTS algorithm 
to macromolecules shows that for in = 3 or 5 the integration 
is as accurately performed as when bond-length constraints 
are used. Since the bond frequencies are about four times the 
other ones, a value of m = 4 would be expected to be large 
enough to ensure proper integration of the bond forces. 

We note that the physical quantities one is interested in 
should only be evaluated at the conventional time steps At, 
not at the substeps At'. Since the bond stretching forces can 
be rapidly computed, application of this MTS algorithm is as 
efficient as the use of the SHAKE method, but it avoids the 
disadvantages of the latter method which were discussed in 
the previous section. 

3.5.5. Searching Neighbors 

The bulk (approximately 9Oo/o)  of the computer time re- 
quired by a MD or SD simulation is used for calculating the 
nonbonded interactions, that is, for finding the nearest 
neighbor atoms and subsequently evaluating the van der 
Waals and Coulomb interaction terms for the atom pairs 
obtained. Various schemes for performing this task as effi- 
ciently as possible have been proposed.[6. 1441 

I Neighbor list techniques. Once the neighbors have been 
found, either by scanning of all possible atom pairs (oper- 
ation proportional to N'), or by using grid-search tech- 
niques (proportional to N ) ,  the pairs are stored in a neigh- 
bor list which is only updated every so many steps, 
typically every 5 to 100 steps. At each time step the neigh- 
bor list is used to calculate the interactions (operation 
proportional to N ) .  

2. Grid search techniques. The computational box is filled 
with a grid or mesh, and for each grid cell it is determined 
which atoms lie in it. This operation is proportional to N. 
The nearest neighbors of an atom can easily be found in 
the grid cells surrounding the grid cell containing the 
atom. 

An evaluation of the different schemes can be found in 
Ref. [144]. For small systems ( N  5 1000) the use of neighbor 
list techniques will reduce finding the neighbors to a small 
part of the calculation. For large systems ( N  2 1000) the 
application of grid search techniques will become advanta- 
geous. 

3.6. Initial Conditions, Equilibration, and Anatysis 
of Simulations 

A simulation starts with initial atomic positions and veloc- 
ities. The results should be independent of these. The initial 
configuration for a molecular system can be obtained from 
different sources: X-ray structure, model building, distance 
geometry calculation, random search techniques, etc. The 
initial velocities are either taken from a Maxwellian distribu- 
tion or chosen to be zero, in which case strain in the molecule 
that is converted into kinetic energy may generate non-zero 
velocities. 

The equilibration period that is required will depend on 
the relaxation time of the property one is interested in. Some 
properties, such as the kinetic energy, require short (picosec- 
onds) equilibration times, whereas others, such as dielectric 
properties, may require longer times of the order of tens of 
picoseconds. During a simulation a number of quantities, 
such as the potential and kinetic energy, or the diffusion 
from the initial structure, are generally monitored to obtain 
a picture of the stability of the simulation. 

The results are generally analyzed by taking time averages 
or averages over simulations with different initial conditions 
of the quantities of interest. Fluctuations and correlation 
functions may be calculated to analyze the mobility and 
dynamic behavior of the system.[61 

4. Application of Simulations 

4.1. Understanding in Terms of Atomic Properties 

The obvious utility of computer simulation is the possibil- 
ity of analyzing molecular processes at the atomic level. 
Many examples can be found in the Here, we 
briefly mention two recent examples, the atomic interpreta- 
tion of biochemical data on repressor-DNA operator bind- 
ing,[261 and the atomic interpretation of biophysical mea- 
surements on membrane properties.[371 
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4.1.1. Interpretation of Biochemical Data on 
Repressor-Operator Binding by MD Computer Simulation 

In Ref. [26] a 125-ps MD simulation of a Lac repressor 
headpiece (51 amino acid residues) complexed with its DNA 
operator (14 base pairs) in aqueous solution was reported. 
The starting structure for the simulation was obtained from 
model building and energy minimization based on 169 pro- 
ton-proton distances for the headpiece and 24 headpiece- 
DNA proton-proton distances which were available from 
2D-NMR When analyzing the repressor- 
operator contacts, no evidence was found that a so-called 
“direct readout” mechan i~m[’~~1  for recognition is based on 
direct repressor side-chain-base hydrogen bonds, which is 
the common view on recognition. The simulation suggested 
that direct readout occurs rather through non-polar contacts 
and water-mediated hydrogen bonds. The repressor-opera- 
tor contacts as observed in the simulation are compatible 
with the available biochemical data on base-pair or amino 
acid residue substi t~tion,[‘~’~ 14’] but do not support the 
usual interpretation in terms of side-chain-base hydrogen 
bonds. This illustrates the usefulness of computer simulation 
studies to obtain an interpretation of biochemical data at the 
atomic level. 

4.1.2. Interpretation of Biophysical Data on 
Membrane Properties by MD Computer Simulation 

In Ref. [37] a 180-ps MD simulation of a bilayered system 
of 52 sodium ions, 52 decanoate, 76 decanol and 526 water 
molecules was reported. A detailed analysis of the lipid-wa- 
ter interface was made. The charged (decanoate) head 
groups lie well within the water layer, but the alcoholic 
groups are situated more on the lipid side of the interface, 
which appears to be very diffuse and extends over almost 
10 A. Unexpectedly, the overlap of sodium ion and car- 
boxylic acid distributions suggests a charge compensation 
rather than an electric double layer as pictured in most text- 
books. Water molecule orientation is such that the remaining 
ion charge distribution is compensated. 

Lateral diffusion constants of the lipid molecules as mea- 
sured in the simulation (3 x cm2 s-’) compare well 
with experiment (2 x cm2 s - l )  as measured using ni- 
troxide spin labels.[’491 Analysis shows that the hydro- 
dynamic interaction of the head groups with the aqueous 
layer determines the diffusion constant of the lipid 
molecules, rather than interactions within the lipid layer. 
This illustrates the usefulness of computer simulation studies 
to obtain an interpretation of biophysical data at the atomic 
level. 

4.2. Determination of Spatial Molecular Structure on the 
Basis of 2D-NMR, X-Ray or Neutron Diffraction Data 

During the last few years computer simulation has become 
a standard tool in the determination of spatial molecular 
structure on the basis of X-ray or neutron diffraction or 
2D-NMR data.[’501 The goal of structure determination 
based on experimental NMR or  diffraction data is to find a 
molecular structure that 

1 .  satisfies the experimental data, such as a set of atom- 
atom distance constraints {r:} or torsional angle con- 
straints {&} in the case of NMR, or a set of observed 
structure factor amplitudes Fob,(hkl) and, if available, 
phases ~ ( h k l )  in the case of diffraction data, and 

2. has a low energy in terms of a molecular potential energy 
function Vphys( { r i ) )  [Eq. (l)]. 
In order to optimize a structure simultaneously with re- 

spect to both criteria, the experimental information is cast 
into the form of a penalty function or restraining potential 
VreSt, ,  the value of which increases the more an actual struc- 
ture violates the experimental data. The most simple choice 
of a function taking into account maximum values for the 
interatomic distances {ry,”} would be Equation (82), where 
the force constant is denoted by Kdr . 

The corresponding function which restrains the calculated 
structure factor amplitudes F,,,,(hkl) to the observed ones is 
defined in (83). 

hkl 

The optimization probIem is to find a molecular structure 
for which the energy function (84) attains the global 

minimum. As discussed in Section 3.2, MD simulation is a 
very powerful method to search configuration space for low 
energy configurations, due to its ability to surmount energy 
barriers of the order of k,T per degree of freedom. There- 
fore, the application of MD computer simulation in spatial 
structure refinement of 2D-NMR or X-ray diffraction data 
has become widespread in recent years. 

4.2.1. Refinement of Structures Based on NMR Data 

After introduction of the method of MD refinement[’511 it 
has been applied to a variety of molecules using different 
refinement  protocol^.^'^*^ 1541 Th e penalty function V,,,,, 
may be chosen in different ways.[’541 The relative weight of 
the restraining term in Equation (84), that is the value of K,,, 
may be chosen so large as to reduce the distance violations, 
at the expense of increasing the intramolecular energy V,,, . 
Too large a Kdr value will generally lead to a strained (un- 
physical) molecular structure.[281 The searching of configu- 
ration space may be performed at high temperature in order 
to more easily cross energy barriers. 

The standard procedure is to start with a number of dis- 
tance geometry (DG) type calculations to generate a collec- 
tion of starting structures, which are subsequently refined by 
MD simulation. In Ref. [153] it was shown that the best DG 
structure in terms of distance violations is generally not the 
best structure after MD refinement. This is due to the crude 
energy function used in DG which has to be cast in the 
form of distances, and so favors geometries which are unfa- 
vored by more sophisticated energy functions used in simula- 
tions. 
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When the N M R  data contain contributions from different 
molecular conformations it will be impossible to find one 
conformation satisfying the experimental data." 5s1 This ob- 
servation led to the introduction of time-dependent con- 
straints" s61 which d o  not force the molecule to satisfy the 
distance constraints a t  each time point of the simulation, but 
only forces the distance constraints to  be satisfied on aver- 
age. This forms a better representation of the measured data. 

4.2.2. Refinement of Structure Based on 
Crystailographic X-Ray or Neutron Diyfraction Data 

Since its introduction the method of M D  refinement of 
crystallographic data" 571 has been applied mainly in protein 
crystallography. Again, different penalty functions (83) and 
refinement protocols are used. Generally speaking M D  re- 
finement saves a few months work over conventional refine- 
ment when applied to proteins. A survey of recent develop- 
ments is given in Ref. [158]. 

As in the N M R  case, the use of time-dependent structure 
factor restraints will be a much better representation of the 
experimental information, which is an average over time and 
over molecules. Preliminary results (P. Gros, private commu- 
nication) indicate that lower R values and better searching of 
conformational space are obtained. 

4.3. Prediction of Structural Changes by MD Simulation 

No reliable approaches are as yet available for the predic- 
tion of de novo (macro)molecular structures, and there is no 
real alternative to  experimental structure determination. 
When structural information on homologous molecules is 
available, a molecular structure may be predicted starting 
from the homologous molecules and subsequently changing 
it to the required composition, either by model building on 
a graphic device or by more automatic simulation tech- 
niques. When additional experimental information from X- 
ray diffraction or N M R  is available the chance of success is 
greatly increased. An example is the structure determination 
of the 279-residue protein thermitase, starting from the 
known structure of subtilisin (275 amino 1591 

These proteins show only 47 % homology; residues had to  be 
changed, deleted and inserted when changing subtilisin into 
thermitase. Subsequent M D  refinement using crystallo- 
graphic X-ray data on thermitase made numerous atoms 
move over more than 4 A. Some parts showed a structural 
change of more than 8 A. 

If only one or  a few amino acid side chains in a protein are 
changed (mutated), the structural change may be predicted 
by M D  simulation without the extra help of X-ray data. In 
Figure 13 the conformation of the Met-222 + Phe mutant of 
subtilisin resulting from a M D  simulation in which Met-222 
was gradually changed into Phe-222[321 is compared with the 
conformation as obtained from an X-ray diffraction deter- 
mination of this subtilisin mutant." 601 The predicted confor- 
mation is correct. However, this is not always true; especially 
when hydrogen bond networks, involving bound water 
molecules, have to be rearranged, the simulation period may 
be too short compared to the hydrogen bond network relax- 
ation 

Fig. 13. Stereoview of the hydrophobic binding pocket of subtilisin. Upper 
part: forward 222 Met -t Phe mutation; dashed line: 222 Met (native) starting 
structure; thick solid line: 222 Phe (mutant) M D  predicted structure; thin solid 
line: 222 Phe (mutant) X-ray structure. Lower part: backwards 222 Phe + Met 
mutation; dashed line 222 Phe (MD) starting structure; thick solid line: 222 
Met M D  predicted structure (from 222 Phe mutant); thin solid line 222 Met 
(native) M D  structure (from X-ray). 

It is also possible by M D  simulation to determine the 
conformation of a molecule as a function of the type of 
environment, viz. crystalline, nonpolar solution, aqueous so- 
lution, etc. Studies of this type have been performed for 
different molecules.[161 - 1641 For the immuno suppressive 
drug cyclosporin A (CPA) the conformational differences 
found between its crystal conformation and its conformation 
in a chloroform solution were exactly reproduced by two 
M D  simulations in the corresponding environments (Fig- 
ure 16).[1641 

This application illustrates the power of M D  simulation 
when studying conformational properties of flexible 
molecules or mutants. However, when large conformational 
changes are to  be expected the length (typically 10'-lo2 ps) 
of a M D  simulation may be too short to bring these about in 
the limited time available to surmount possible energy barri- 
ers. 

4.4. Prediction of Free Energy Changes by 
MD Simulation 

From an M D  trajectory the statistical equilibrium aver- 
ages can be obtained for any desired property of the molec- 
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ular system for which a value can be computed a t  each point 
of the trajectory. Examples of such properties are the poten- 
tial and kinetic energy of relevant parts of the system, struc- 
tural properties and fluctuations, electric fields, diffusion 
constants, etc. A number of thermodynamic properties can 
be derived from such averages. However, two important 
thermodynamic quantities, the entropy and the (Gibbs or 
Helmholtz) free energy, generally cannot be derived from a 
statistical average. They are global properties that depend on  
the extent of phase (or configuration) space accessible to  the 
molecular system. Therefore, computation of the absolute 
free energy of a molecular system is virtually impossible. Yet, 
the most important chemical quantities like binding con- 
stants, association and dissociation constants, solubilities, 
adsorption coefficients, chemical potentials, etc., are directly 
related to the free energy. Over the past decade statistical 
mechanical procedures have evolved by means of which rel- 
ative free energy differences may be obtained. For  recent 
reviews of methodology and applications see Refs. [8, 1651. 

The most powerful method is the so-called thermodynam- 
ic cycle integration technique. The free energy difference be- 
tween two states A and B of a system is determined from a 
M D  simulation in which the potential energy function 
V ( { r i ) )  [Eq. (I)] is slowly changed such that the system slow- 
ly converts from state A into state B. In principle the free 
enthalpy difference AGBA = G(B)-G(A) is determined as 
the work necessary to  change the system from state A to  state 
B via a reversible path. An example is given in Figure 14, 
where the free enthalpy of changing one water molecule 
(state A) in a cube with 216 water molecules into a methanol 
molecule (state B) is illustrated. The change is carried out 
over a period of 20 ps and yields AGBA = 6.1 kJ mol-', as 
compared with an experimental value of 5.2 kJ mol-'. 

Fig 14. Free enthalpy change AC on changing H,O into CH,OH and back 
again. 

The basis on which the thermodynamic cycle approach 
rests is the fact that the free enthalpy G is a thermodynamic 
state function. This means that as long as the system is 
changed in a reversible way the change in free enthalpy AG 
will be independent of the path. Therefore, along a closed 
path or cycle one has AG = 0. This result implies that there 
are two possibilities of obtaining AG for a specific process; 
one may calculate it directly using the technique sketched 
above along a path corresponding to  the process, or one may 
design a cycle of which the specific process is only a part, and 

calculate the AG of the remaining part of the cycle. The 
power of this thermodynamic cycle technique lies in the fact 
that on the computer aIso non-chemical processes such as 
the conversion of one type of atom into another type (H into 
CH,, see Fig. 14) may be performed. 

The method is outlined in Figure 15 for the process of 
binding of two different inhibitors, trimethoprim (TMP) and 
its triethyl analogue (TEP), to  the enzyme dihydrofolate 
reductase (DHFR) from chicken liver['66. 1671 in the pres- 
ence of coenzyme (NADPH) and water. The appropriate 
thermodynamic cycle is given in Figure 15. The relative 

X - CH3 
X - 0  ITMP] 

X=CH21TEPI 
X - CH, 

ilexp) 
TMPlaq I + DHFR NADPH (aq 1-TMP DHFR NADPH l a q  I 

Llstrnl 
3ISlrnl l  I 

TEPiaq 1 + DHFR NADPH laq I-TEP DHFR NADPH l a q  I 
2iexpI 

Fig. 15. Thermodynamic cycle for computation of the relative free enthalpy of 
binding of two inhibitors, trimethoprim (TMP) and its triethyl analogue (TEP), 
to the enzyme dihydrofolate reductase (DHFR) in the presence of coenzyme 
(NADPH) in aqueous solution. Complexation is denoted by the symbol ":". 

binding constant of the two inhibitors equals K,IK, = 

exp[ -(AG2 - A G , ) / R T J .  However, simulation of processes 
1 and 2 is virtually impossible, since it would involve the 
reversible removal of many solvent molecules from the active 
site of theenzyme to be substituted by the inhibitor. Since the 
processes in Figure 15 form a cycle, one has AG2 - AGl = 

AG4 - AG3, and the processes 3 and 4 can easily be simulated 
since they involve the change of three oxygen atoms (TMP) 
into three CH, groups (TEP). M D  simulation of process 3 
yields AG3 = -61 0.2 kJ mol-'  and of process 4 yields 
AG4 = -65 f 10 kJ mol-'. So, the computed difference in 
free enthalpy of binding between TEP and T M P  is 
+ 4  f 10 kJ mol-'  to be compared with an experimental 
value of + 7  kJ mol-I.  

Although this result seems reasonable, the computed val- 
ue may only be considered as an order-of-magnitude esti- 
mate. This i s  due to various assumptions and approxima- 
tions that underlie this type of free energy calculation. Since 
these have been discussed el~ewhere,[ '~'1 the most important 
ones will only be summarized here. 
1. Adequate sampling, or the relaxation time o j  the environ- 

ment. The change from state A to state B has to be carried 
out in a reversible way, which means that the time period 
of the change must be much longer than the relaxation 
time of the environment which has to adapt to the change. 
The rotational correlation time of a water molecule is 
about 2 ps and the dielectric relaxation time of water is 
about 8ps.  This means that a M D  simulation of the 
change from A to  B over 20 ps or more is long enough to 
obtain reasonably accurate AG values (see Fig. 14). How- 
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Fig. 16. Hydrogen bonds (dashed lines) occurring in two M D  simulations of cyclosporin A. Percentage of occurrence is given, both for a MD simulation in aqueous 
solution and (in parentheses) for a MD simulation in vacuo. 

ever, in process 4 (Fig. 15) the relaxation time of the 
(protein) environment of the inhibitor is much longer, 
which results in a large uncertainty of 10 kJ mol- '. 

2. Effect of long-range Coulomb interactions. Free energy 
computation involving the creation or annihilation of 
(full) atomic charges is very dependent on a proper treat- 
ment of the Coulomb interaction, which has an r- '  dis- 
tance dependence. For example, when creating an ion in 
aqueous solution, the contribution of the hydration shell 
between 9 8, and 12 8, to the free energy of solvation is 
about 40 kJ mol-','4'1 which means that the cut-off ra- 
dius must be very large to  obtain accurate AG values. 
When only dipolar changes play a role, as in the case of 
Figures 14 and 15, the interaction has an F 3  distance 
dependence, which considerably reduces the need to use a 
large cut-off radius. 

3. Sensitivity to force field parameters. Not unexpectedly, 
the free energy of a molecular system is rather sensitive to 
the interaction function (1) that is used in the simulation. 
For  example, in the relatively simple case of the free en- 
thalpy of solvation of methanol in water (see Fig. 14), 
application of force field parameters of established force 
fields yields values ranging from 0 to 14 kJ mol- 1,1281 a 
spread of 2-3 kT around G,,, = 5.2 kJ mol-'. 

The techniques for computation of (relative) free energy 
are in many applications not yet sufficiently accurate. How- 
ever, they are still being improved and are in principle widely 
applicable in the study of molecular systems. 

4.5. Static versus Dynamic Representation of a 
Molecular System 

The common approach to  modeling a molecular system 
on a computer is a static one. For example, quantum calcu- 

lations yield an equilibrium charge distribution, molecular 
mechanics calculations one or a few minimum energy confor- 
mations of a molecule; on a graphics device, molecules are 
studied in terms of fixed conformations. However, 9 molecu- 
lar system at  room temperature is by no means of static 
character. It should be described in terms of a multi- 
dimensional distribution function of all atomic coordinates 
and its development in time. An example of a dynamic equi- 
librium between different hydrogen bond patterns is given in 
Table 6 for crystalline cyclodextrin. The 061 atom is in- 

Table 6. Dynamic equilibrium between various hydrogen bond patterns involving the 
0 6 1  atom in crystalline rr-cyclodextrin [a] 

M D  simulation Neutron diffraction 
Donor la] Acceptor % distance angle distance angle 

0 6 3  19 2.79 160 2.81 177 
0 6 5  2 3.04 158 
0 5 6  1 2.99 158 
OW3 6 3.04 146 
OWA + 2 2.08 156 

90 
14 3.06 156 
3 284  161 

:$} 2.97 173 

izi) 3.33 107 

156 

2.97 
OWA-HWA2 0 6 1  3.01 

021-H21 
0 63-H 63 
0 WA-H WAl 

OW3-H W31 
0 W3-H W32 
OWB-H WBl 

061-H61 

1;] :::: 
+ 2 2.94 I 79 

[a] Abbreviations. D = donor, A = acceptor, W = water atoms 1291. 

volved in different, mutually exclusive hydrogen bonds. The 
ones that do exist more than about 20% of the MD simuIa- 
tion are also observed, as expected, in the neutron diffraction 



experiment.['6s1 It is also observed that the lower the occur- 
rence of a hydrogen bond is in the simulation, the more 
deformed its geometry is when described in terms of one 
static hydrogen bond, as is the case for the neutron diffrac- 
tion data (see Table 6). 

4.6. The Role of a Solvent in Molecular Simulations 

Many (macro)molecular modeling studies involve an iso- 
lated molecule without any solvent. This means that solvent 
effects are completely ignored. The molecular surface will be 
distorted by the vacuum boundary condition, and certainly 
no meaningful free energy estimates can be obtained. When 
a molecular complex is formed, solvent molecules may play 
a bridging role, as is observed in the repressor-operator 
complexes.[26. 1691 Even intramolecular hydrogen bonding is 
affected by the competitive presence of water molecules sur- 
rounding a solute in aqueous solution. An example is given 
in Figure 16, where the occurrence of intramolecular hydro- 
gen bonds is given for cyclosporin A, on the one hand simu- 
lated in vacuo and on the other in aqueous solution.['641 It 
is clear that omission of the solvent results in too high a 
percentage of intramolecular hydrogen bonds. Proper treat- 
ment of solvent effects is a necessary condition for a reliable 
simulation of molecular properties. 

4.7. Other Applications of Computer Simulation 
in Chemistry and Physics 

The field of computer simulation of molecular systems has 
grown so rapidly that a review of all possible applications is 
hardly feasible. In this section we have chosen examples, 
mostly of our own work, to illustrate specific aspects of 
simulation studies. Many other applications may be found in 
a number of reviews and monographs on computer simula- 
tion in physics and chemistry.[' -91  We would like to mention 
a few recent studies which may lead the reader to areas of 
application that were not mentioned here. Computer simula- 
tion has been applied to the study of electrolytes,['70] ionic 
conductors,[' 711 ionic crystals,['721 ionic salts,[lOl and, inter 
alia, to processes like adsorption,[' 731 and 
melting.['75. 1761 

5. Future Developments in Computer Simulation 

5.1. Quantum Simulations 

Classical computer simulation implies a number of restric- 
tions, as mentioned in Section 2.1.3, which are due to the 
assumption that quantum effects play a minor role. A proper 
description of low-temperature or light-atom (hydrogen) 
motion or chemical reactions requires a quantum mechani- 
cal treatment. Various quantum methods for application in 
the area of simulation have been developed and recent years 
have shown an increasing activity in the area of quantum 
simulations. Here, we briefly mention a few methods. Quan- 
tum effects can be incorporated in simulations in different 
ways. 

A 

B. 

Quantum corrections to the results of classical simulations 
can be made. Expansion of the partition function in pow- 
ers of h, Planck's constant, leads to correction formulas 
for thermodynamic quantities like the free energy" 7 7 1  or 
structural quantities like the radial distribution function 
g(r).['781 Berens et al. propose a correction formula based 
on a harmonic approximation of the atomic motion.["91 
Also for time-dependent equilibrium quantities, quan- 
tum correction formulas are 
Quantum mechanical treatment of a few degrees of free- 
dom in an otherwise classical simulation can be imple- 
mented in different ways. 

1. The path-integral sirnulation - I s 3 ]  yields a 
quantum mechanical equilibrium distribution. Its 
name originates from its derivation by a discretization 
of the path-integral form of the density matrix. A 
recent application is the treatment of electron transfer 
reactions.[' 841 

2. The Gaussian wave packet method"" - I s 7 ]  constitut- 
ed an early attempt to solve the time-dependent 
Schrodinger equation by computer simulation. A 
problem inherent in this method is that of arriving at 
an adequate description of the interaction between a 
wave packet and its classical environment. 

3. In the density functional dynamic method['s81 an ener- 
gy functional, as used in density-functional theory, is 
added to the Lagrangian of the molecular system, and 
the Lagrangian equations of motion are subsequently 
integrated using MD techniques. Static and dynamic 
properties of crystalline silicon were obtained in terms 
of a self-consistent pseudo potential.['ss] 

4. In the adiabatic quantum molecular dynamics meth- 
~d~~~~~ the time-dependent Schrodinger equation for 
the excess electrons and Newton's equation of motion 
for the nuclei plus core electrons are integrated in the 
Born-Oppenheimer approximation. Electronic states 
and dynamic properties of dilute liquid K-KCl solu- 
tions were studied.['891 

The potential of the different methods has not yet been 
fully explored, which means that a best methodology has not 
as yet crystallized. The field is in a state of rapid development 
and holds much promise for a proper dynamic treatment of 
quantum degrees of freedom in the future. 

5.2. System Size and Time Scale of Simulations 

The number of particles in a computer simulation typical- 
ly lies in the range of 102-104, although simulations involv- 
ing more than lo4 atoms are nowadays Rela- 
tively complex systems like a protein embedded in a mem- 
brane will also contain about lo5 atoms. In practical applica- 
tions limited system size is much less a concern than the finite 
time scale of a computer simulation. Due to large energy 
barriers in the potential energy surface, it may take a molec- 
ular system a very long time to cross these barriers and so to 
sample configuration space efficiently. Typical simulation 
periods are 101-102 psec, which is much too short for a 
proper description of properties which show a much longer 
relaxation time. Therefore, possibilities to lengthen the time 
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scale of M D  simulations are continuously investigated. Here 
we mention a few. 

1. Freezing of degrees of freedom. The basic problem of re- 
moving degrees of freedom is that of defining an appro- 
priate interaction function for the remaining degrees of 
freedom. Moreover, the degrees of freedom removed 
should play a minor role in the processes one is interested 
in. Application of bond-length constraints and the twin 
range method to handle long-range forces fall in this 
class. An alternative to  freezing of degrees of freedom is 
the use of multiple time step integration methods. 

2. Stochasti$cation of degrees of freedom. Explicit treatment 
of degrees of freedom may be replaced by the application 
of a mean force plus a stochastic force which represent the 
average effect of the removed or stochastified degrees of 
freedom on the remaining explicitly treated ones. An ex- 
ample is the use of the Langevin equation to  model the 
solvent or solid-state environment of a molecule. 

3. Scaling of system parameters. Assume that we are inter- 
ested in a quantity Q which has a relaxation time z that is 
longer than the time period that could be covered by a 
M D  simulation. It may be possible to identify one or 
more system parametersp for which z is a (rapidly) chang- 
ing function z(p) of p .  In that case the physically correct 
value of p = pphye can be changed to pshort such that 
~ ( p ~ ~ ~ ~ ~ )  becomes shorter than the length of a M D  simula- 
tion, which can then be carried out to obtain Q(prhorI). 
Extrapolation of Q(p) for p from pshorl to pphys will yield an 
estimate Q(pph,,). The risk associated with the application 
of this technique is that by scaling of system parameters, 
the physical processes are changed such that a process a t  
pshorl may have nothing to  d o  with one atp,,,,. For exam- 
ple, when studying the relaxation of vibrational energy of 
a n  HCl molecule in an Ar lattice, the relaxation time may 
be shortened from the ps time scale to the ns time scale by 
reducing the HCI bond-stretching force constant. This 
will, however, certainly influence the balance between 
various relaxation mechanisms that are feasible for this 
process. 

4. Activated barrier crossing. In the case of an activated pro- 
cess, methods exist to avoid a full simulation of the rare 
event of barrier cro~sing.I '~]  The procedure consists of 
three steps: 1) The location of the barrier must be deter- 
mined. 2) The likelihood that the system will be at the top 
of the barrier is computed using umbrella sampling tech- 
niques. 3) The transition probability is computed by run- 
ning M D  trajectories from the top of the barrier. This 
technique has been applied to  simulate ring flips in 

5.  Mass tensor dynamics. In the classical partition function 
the integration over the momenta of the particles can be 
carried out separately from that over the coordinates, 
when no constraints are applied. The atomic masses d o  
not appear in the configurational integral, which means 
that the equilibrium properties of a system will be inde- 
pendent of the masses in the system. The technique of 
mass tensor exploits this freedom by 
choosing the atomic masses such that the high-frequency 
motions of the molecular system are slowed down, which 
allows a longer simulation time step to  be taken. 

None of the above-mentioned methods for lengthening 
the time scale of a simulation is really satisfactory. Most of 
the progress in this respect will probably result from the ever 
increasing power of computers. Yet, a combination of the 
different techniques mentioned above may yield a consider- 
able reduction of the required computing power in suitable 
cases. 

5.3. Accuracy of Molecular Model and Force Field 

As was discussed in Section 3.1 . I ,  there is no best molecu- 
lar model or force field for all possible applications. The 
reliability of a particular force field will depend on the type 
of system and physical quantity it is applied to. Irnprove- 
ment of the quality and extension of the range of applicabil- 
ity is a continual concern in the area ofcomputer simulation. 
Yet, the improvement of a force field is not a simple exercise 
for the following reasons. 
1. When applying complicated force fields like (I), the exact 

relationship between a.force,fieldparameter and a molecu- 
lar property is often not known. For example, how will the 
free enthalpy of solvation of methanol in water depend on 
the geometry and nonbonded interaction parameters? 

2. Force ,field parameters may be correlated. For example, 
the actual barrier for a torsional rotation will depend on 
the combined effect of the dihedral angle potential energy 
term in ( I )  and the third neighbor nonbonded interaction 
between the first and the last atom defining the torsional 
angle. 

3. There may be conflicting requirements j o r  improvement. 
For exampIe, the van der Waals radii of third neighbor 
atoms must not be too large in order that the energy of a 
gauche conformation is not too high in the case of a 
hydrocarbon chain. However, to obtain the correct densi- 
ty for a hydrocarbon liquid the van der Waals radius must 
be chosen larger. This conflict may be solved by a sepa- 
rate treatment of third-neighbor and other van der Waals 
interactions. 

4. There is some conflict between the wish to stick to con- 
ceptual simplicity of a force field on the one hand, and the 
wish to extend its range of applicability and accuracy by 
allowing the force field to become more complex. 

5. Approximations inherent in certain force fields may 
block substantial improvement by changing of the 
parameters. For example, when applying a cut-off radius 
to long-range Coulomb forces, it is impossible to obtain 
a proper representation of electrostatic effects. 

The inclusion of polarizability will be essential for an accu- 
rate modeling of processes like the binding of charged lig- 
ands. Polarizability only allows for a local displacement of 
charge, not for a transfer of charge. This can be achieved by 
combining static a b  initio or semi-empirical quantum meth- 
ods to  compute charge densities with classical M D  simula- 
tion in an adiabatic way: the quantum charge density is 
converted into atomic charges which are used in a number of 
classical simulation steps, and the new atomic positions are 
subsequently used to  generate a new quantum charge distri- 
bution, and so on.[1911 This type of treatment is only an 
improvement over conventional simulation when (i) the 
quantum Hamiltonian includes the long-range electrostatic 
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field, and (ii) the classical Hamiltonian accounts in a consis- 
tent way for the changing charge distribution. 

In view of the limited accuracy of currently available force 
fields it may be wise in practical applications to check 
whether the results obtained are force field dependent. 

5.4. Non-Equilibrium Molecular Dynamics 

In this paper we have considered the computer simulation 
of systems in equilibrium. It is also possible to change the 
equations of motion and boundary conditions such that the 
system is kept in a non-equilibrium state. In such a non-equi- 
librium molecular dynamics (NEMD) simulation, a non- 
equilibrium ensemble is sampled. NEMD simulation is an 
efficient technique to obtain transport coefficients, like vis- 
cosity, thermal conductivity, and mobility of molecular sys- 
tems. An example is the study of the molecular viscosity of 
n-alkanes as a function of the intramolecular interaction 
function.['921 For an introduction to NEMD methods and 
their applications see Refs. [6, 71. It is a rapidly developing 
field, which is still almost unexplored, with prospects in the 
area of practical rheology. 

5.5. Development of Computing Power 

The growth of the field of computer simulation of fluid- 
like systems has been made possible by the steady and rapid 
increase of computing power over the last couple of decades. 
Figure 2 suggests an increase of an order of magnitude every 
5-7 years. This trend will continue in the near future, since 
the present growth of computing power is based on the intro- 
duction of massive parallelism. The possibilities of parallel 
computation can be exploited rather easily in MD simula- 
tions, since the most time-consuming part is the force calcu- 
lation, which can be carried out in parallel for all atoms in 
the system. Also the integration step can easily be performed 
in parallel. The required computing time for a MD simula- 
tion depends linearly on the simulation period and the num- 
ber of particles (in case of forces of finite range). Therefore 
this type of calculation can optimally benefit from the con- 
tinuous growth of computing power. In contrast, quantum 
mechanical calculations extend their range much more 
slowly. due to the fact that the required computing power 
is approximately proportional to N," in the case of semi- 
empirical or local density functional calculations, to N: in 
the case of Hartree-Fock calculations, or even to N,' in the 
case of configurational interaction calculations. Here, N ,  is 
the number of electronic degrees of freedom. In classical 
simulations the required computing power is proportional to 
N , ,  or in the case of inclusion of long-range forces or polar- 
izability to at most N,", where N ,  denotes the number of 
atomic degrees of freedom. 

6. Summary and Outlook 

Dynamic computer simulation is just a branch of compu- 
tational chemistry and physics in which a mathematical 
model of the real world is formulated and its consequences 
for the various physical or chemical quantities are evaluated 

0 world ---) 1 experiments J - 

c/oss/ f ~ c a  t Ion 
abstracf/on 
s I mplr f I c a f I o n 
approxi ma hon 
qeneroftsaf, on /madell+m,,,,,,l+F] computational 

Fig. 17. Computational physics and chemistry involve formulation and testing 
of a (mathematical) model of the real world. 

by numerical methods. This is illustrated in Figure 17. In this 
paper much attention has been devoted to methodology, 
because the core of any model is the approximations, as- 
sumptions and simplifications that are used in its formula- 
tion. Only an understanding of the basics of a particular 
model may lead to sensible application or improvement of its 
performance. Secondly, attention has been focussed on com- 
parison of model predictions with experimental data, which 
may reveal flaws in the model (or experiment). Due to the 
complexity of the systems of chemical interest, theoretical 
methods only became of practical interest with the advent 
and development of computers. With the continuous pro- 
gress of methodology and computing power, computational 
methods, especially computer simulation methods, will find 
wider and wider application in the different areas of chemis- 
try. 

In Table 7 we have listed our thoughts about the possible 
development of various aspects of (molecular dynamics) 

Table 7. Development of various aspects of molecular dynamics computer 
simulation methods in chemistry. 

Aspect Past Present Future 
(1 980) (1 990) (2000) 

accuracy 
- atomic positions - 3  A 
- free energy - 

force field united atoms 
environment vacuo 
time scale - lops  
system Size =lo00 atoms 
quantum (MD) - 
degrees of freedom 
non-equilibrium atomic fluids 

simulations 

G1 A 
-4  k,T 
all atoms 
solvents 

=10000 atoms 
simple models 

G 100 ps 

simple polymers 

-0.5 A 
-2  k,T 
polarizability 
membranes 
21 ns 
= 100 000 atoms 
enzyme reactions 

rheology of mo- 
lecular mixtures 

computer simulation methodology and application in chem- 
istry. From the contents of this paper it will be clear that 
there are still a number of very difficult problems, such as 
protein folding or crystallization, which are well beyond the 
reach of simulation methods owing to the size of the config- 
urational space involved, the time scale of the process, and 
the small free energy differences between folded and unfold- 
ed state or between crystalline and liquid state. 
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