
DISCUSSION NOTES 01
ECS 10, WINTER 2008

SAMUEL JOHNSON

Contents

1. Installing Python 1
1.1. Beginner Windows and Macintosh 1
1.2. Advanced Macintosh and Linux 2
2. Using IDLE 2
2.1. The top-level 2
2.2. Editing source code 3
3. Variables 4
3.1. Variable basics 4
3.2. Converting between types using int(), float(), and str() 5
4. Simple operators 6
4.1. Mathematical operators for integers and floats 6
4.2. Operators on strings 7
5. Summary 7
6. About these notes 8

1. Installing Python

In this section we describe how to install the Python environment onto a Win-
dows PC and a Macintosh. For advanced Macintosh and Linux users we show how
to invoke python from a terminal session. Most students will only be interested in
using Python via the IDLE application and can safely ignore the Advanced Mac-
intosh and Linux section below. For this course we will assume that the student
is using IDLE.

1.1. Beginner Windows and Macintosh. Python is available for download free
of charge from the Python website at http://www.python.org/download/. From
this page you can download the appropriate installer package for your system
(probably either the Windows installer or the Macintosh OS X universal installer).
Once the download is completed simply open the installer and follow the directions
given.

1

2 SAMUEL JOHNSON

To invoke a Python session in Windows simply click on the Start button, expand
the Python folder and click on IDLE (Python GUI). In Mac OS X look in the
/Applications/ directory for the MacPython folder. In this folder double click on
IDLE.

1.2. Advanced Macintosh and Linux. Macintosh OS X and most Linux dis-
tributions have a Python run-time environment pre-installed. To invoke the run-
time environment simply type python in a terminal session. To open a terminal
in Macintosh OS X, double click on Terminal located in /Applications/Utilities/.
In most Linux distributions you can launch a terminal session from somewhere in
the tool bar.

If you choose to use Python in this fashion you must write your programs using
a plain text editor, examples of which include emacs and vi. To execute your
program from the command line type python myprog.py where myprog.py is
the name of your program’s source code file. Alternatively you can include the line

#! /usr/bin/env python

at the top of the source file and give the file ”execution” permissions (from the
command line type chmod +x myprog.py) and then you can execute your
program by typing /path/to/myprog.py in the terminal (where /path/to/ is
the path to myprog.py in the filesystem).

2. Using IDLE

In this section we will introduce the major components of IDLE and interact
with the top-level. Then we will focus on how to write commands in a source file
and then run that file.

2.1. The top-level. The first screen that comes up once you launch IDLE is the
top-level. In the top-level you can interact with Python directly. (Sometimes this
is referred to as ”interactive mode” rather than the ”top-level”.) You will notice
a prompt that looks like

>>>

at which you can type commands for Python to evaluate immediately. If the
command involves a print statement then Python will print the results on the
following line and then another prompt.. If the command is an assignment or
something that does not produce output then the following line will simply be
another prompt.

Consider the following simple example:

DISCUSSION NOTES 01 ECS 10, WINTER 2008 3

>>> number_of_cats=22

>>> owners_name="Peggy"

>>> print owners_name, "has", number_of_cats, "cats."

Peggy has 22 cats.

>>>

In this example we first define two variables, number of cats and owners name,
and assign values to them with the assignment operator, =. The third line uses
the print function then prints out the message ”Peggy has 22 cats.”. Notice
that the print function printed the contents of the variables number of cats and
owners name rather than the names of the variables. Instead, the variables were
first evaluated and then their value was printed. Variables will be discussed in
more detail below, but first we will turn our attention to creating and editing
source files in IDLE.

2.2. Editing source code. You will rarely be writing programs directly in the
top-level because it does not provide a mechanism with which to save the program.
Instead you will be using a plain-text editor (or programmer’s text editor). Such
an editor is available in IDLE. To get to it select File → New Window from the
menu bar. This will open a blank window in which you can write your Python
source code. To save the source code you have written simply go to File → Save
As.. just as you would save a document in a word processor or photo in a image
editing program. By convention, Python source code files end with .py extensions
and IDLE does not add this extension automatically. So you will want to save
your programs with names like myProgram.py (with the .py extension)1. To
run the program that you are writing you use the Run → Run Module option
from the menu bar. Alternatively, you can press F5 on the keyboard.

Lets write a simple example program.

name = raw_input("Enter your name: ")

age = raw_input("Enter your age: ")

print "Hi", name, ". You claim to be", age, "years old."

When running this program it will pause at each line that calls the function
raw input() where it waits for the user to type something. It will proceed once
the user presses the enter key on the keyboard. A typical run of this program will
look something like this:

1The notation whereYouWriteLikeThis is called ”camel hump” notation and is fre-
quently used by programmers since white space (i.e. spaces) are not allowed in function
names or variable names. Another common way around using white space is to sepa-
rate words with underscore characters.

4 SAMUEL JOHNSON

>>> =========================== RESTART ===========================

>>>

Enter your name: Rob

Enter your age: 45

Hi Rob . You claim to be 45 years old.

>>>

2.2.1. Using raw input(). The raw input() function will be used often through-
out this course and it is important to understand how to use it properly. raw input()
takes a single parameter, a string, which it prints. Then it waits for the user to
type in something. (The user must press enter when they are finished or else it
will continue to wait indefinitely.) Then raw input() returns what ever the user
typed as a string. Below is an example of its use:

>>> m = raw_input("Enter your name: ")

Enter your name: Sam

>>> p = raw_input("What is your last name, " + m + "? ")

What is your last name, Sam? Johnson

>>> print "Hello", m, p

Hello Sam Johnson

>>>

In this example the user (me) entered Sam and then Johnson at the first and
second raw input() prompts, respectively.

3. Variables

The objective of this section is to explain what variables are and some of their
properties.

3.1. Variable basics. Variables are containers that hold data. There are three
components to a variables:

• The name of the variables; how it is referred to.

• The type of data that the variable contains. Some basic types are strings2,
floats3, and integers4.

2A string is a sequence of characters. This includes alphabetical, numerical, and punctuation
(and others, refer to an ASCII table).

3A float, or ”floating point number” is a representation of a real number and can be recognized
as containing a decimal point.

4An integer is an integer in the mathematical sense; a whole number

DISCUSSION NOTES 01 ECS 10, WINTER 2008 5

• The data or value that the variable contains.

Consider one of the variables above, number of cats. In this case the variables
is named number of cats, it is of type integer (since 22 is an integer), and the
value that it contains is 22. Likewise, the variable owers name is of type string
and contains the value ”Peggy”.

In Python, variable types are changeable. For example, consider the following
code segment:

>>> x=2

>>> print x

2

>>> x=2.2

>>> print x

2.2

>>>

In this example, the variable x first is assigned the number 2. Since 2 is an integer
x is of type integer. We then reassign x the value 2.2, which is a float, so then x
becomes of type float.

3.2. Converting between types using int(), float(), and str(). Python in-
cludes some functions that can be used to convert a variable (and its value) between
different types. These functions are summarized below.

• int() converts a numerical string or floating point number to an integer.

• float() converts a numerical string or integer to a floating point number.

• str() converts an integer or floating point number to a string.

Here are some examples of using these functions.

>>> a = "100"

>>> int(a)

100

>>> float(a)

100.0

>>> b=20.4

>>> str(b)

’20.4’

6 SAMUEL JOHNSON

>>> int(b)

20

>>> c="3,003"

>>> int(c)

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

int(c)

ValueError: invalid literal for int() with base 10: ’3,003’

>>>

In the first line the string ”100” is assigned to variable a. It is important to
notice that the assignment a = ”100” is not the same as a = 100. Notice the
quotation marks in the former; quotation marks denote strings. In the example
above, a is passed to the int() and float() functions and the results are shown.
Another important thing to notice here is that the values of the variables that are
passed as parameters to a function are not updated by the function. That is, if a
= ”100”, after executing the line int(a), the value of a is still ”100”; a is not
changed to 100. That is because the functions int(), float(), and str() do not
have side-effects ; the value of the parameters are not changed by the function.

The final thing to take note of in the above example is what happens when
Python tried to execute the line int(c). There was an error. This is because
c contained the value ”3,003” and the function int() requires its parameter to
consist of only numerical characters. The comma is not a number. This is an
example of a subtle error that will drive a programmer crazy.

4. Simple operators

In the preceding examples we have seen the use of the assignment operator, =,
which is used to assign a value to a variable. Below we give some other basic
operators for numerical and string types.

4.1. Mathematical operators for integers and floats. Here are some of the
simple mathematical operators that can be applied to integers and floats:

• + (Addition); ex: 22 + 23 returns 45

• - (Subtraction); ex: 22 - 23 returns -1

• * (Multiplication); ex: 4 * 2 returns 8

• / (Division); ex: 4 / 2 returns 2

DISCUSSION NOTES 01 ECS 10, WINTER 2008 7

• ** (Exponentiation); ex: 4 ** 2 returns 16

• % (Modulo); ex: 23 % 5 returns 3

If one of the operators above is used with a float on one side and an integer on the
other, the result will be a float.

4.2. Operators on strings. One of the operators above can also be used on
strings.

• + (Concatenation); ex: ”ani” + ”mal” returns ”animal”

• * (Repetition); ex: ”ha” * 3 returns ”hahaha”

The concatenation operator will only work when both arguments are strings. If
one side is a string and the other is, for example, a float then an error message
will be produced. Consider the following examples:

>>> age = 5

>>> message = "The child is " + age + " years old."

Traceback (most recent call last):

File "<pyshell#27>", line 1, in <module>

message = "The child is " + age + " years old."

TypeError: cannot concatenate ’str’ and ’int’ objects

>>>

Here an error has occurred because the variable age is an integer and the literals5

”The child is ” and ” years old” are strings. To fix this we would have to
convert the integer age into a string before concatenating it with the rest:

>>> age = 5

>>> message = "The child is " + str(age) + " years old."

>>> print message

The child is 5 years old.

>>>

5. Summary

These notes have covered some basic properties of variables and some operations
that can be performed on them. Although the examples given were trivial it is

5When a value is ”hard coded” into a program it is termed a literal.

8 SAMUEL JOHNSON

important to understand exactly what is happening in each of them before moving
on to writing more complex (and useful) programs.

6. About these notes

These notes were written by Samuel Johnson for ECS 10, Basic Concepts of
Computing, Winter Quarter 2008 for use in discussion sections. Sam can be
reached by e-mail at samjohnson@ucdavis.edu.

