

• Logic

- Proposition
 Operation on propositions
- Digital Logic
 - Gates

• CPU

- Order of operations
- Speed

Logic: proposition

Definition: A proposition is a declarative sentence that is either true (T, or 1) or false (F, or 0). We refer to 1 or 0 as the truth value of the proposition.

Examples:	Sentence	Proposition?	Truth value
	1+1=4	Yes	0
	Today is Friday	Yes	1
	It will rain tomorrow	Yes	We will know tomorrow
	X+1=2	No	
	I am lying now	No	

Logic: compound propositions

Negation:

Let p be a proposition. The sentence "it is not the case that p" is another proposition, called the negation of p, denoted ¬p or \neg p. It is also read as "not p".

Truth table

р	٦p
1	0
0	1

"inverter"

	Logic	: compound prop	ositions	
Conju The c p ^q true.	unction: conjunction of two (read "p and q") n table:	propositions p a that is true if and	nd q is the propos only if both p and	sition <mark>q</mark> are
	р	q	p∧q	
	0	0	0	
	0	1	0	
	1	0	0	
	1	1	1	

"Multiplication

Logic: compound propositions

Disjunction:

The disjunction of two propositions p and q is the proposition p vq (read "p or q") that is true if and only if p or q, or both are true.

Truth table:

р	q	p∨q	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
		"Addition"	

Integrated Circuit

A computer central processing unit (CPU) is an electronic circuit combining millions of these logical digital gates and other electronic components.

-While the transistor was key to the development of computers, another major step was the possibility to miniaturized to the extreme the design of these electronic circuits: this was made possible by the invention of the Integrated Circuit (or IC, microcircuits, microchips, silicon chips or chips).

There has been several generations of IC:

- -SSI: small scale integration -MSI: medium scale integration
- -LSI: large scale integration

-VLSI: very large scale integration

-Moore's law (1965): "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue"

The Fetch/Execute Cycle

The CPU cycles through a series of operations or instructions, organized in a cycle, the Fetch/Execute cycle:

- 1. Instruction Fetch (IF)
- 2. Instruction Decode (DP)
- 3. Data Fetch (DF)
- 4. Instruction Execute (IE)
- 5. Result Return

Possible operations

Computers can only perform about 100 different types of operations; all other operations must be broken down into simpler operations among these 100.

Some of these operations:

-Add, Mult, Div -AND, OR, NAND, NOR, ... -Bit shifts -Test if a bit is 0 or 1 -Move information in memory -...

Repeating the F/E cycle

Computers get their impressive capabilities by performing many of these $\ensuremath{\mathsf{F/E}}$ cycles per second.

The computer clock determines the rate of F/E cycles per second; it is now expressed in GHz, i.e. in billions of cycles per seconds!

Note that the rate given is not an exact measurement.

	In	Idicative	numt	bers		
Name	Date	Transistors	Microns	Clock speed	Data width	MIPS
8080	1974	6,000	6	2 MHz	8 bits	0.64
8088	1979	29,000	3	5 MHz	16 bits 8-bit bus	0.33
80286	1982	134,000	1.5	6 MHz	16 bits	1
80386	1985	275,000	1.5	16 MHz	32 bits	5
80486	1989	1,200,000	1	25 MHz	32 bits	20
Pentium	1993	3,100,000	0.8	60 MHz	32 bits 64-bit bus	100
Pentium II	1997	7,500,000	0.35	233 MHz	32 bits 64-bit bus	~300
Pentium III	1999	9,500,000	0.25	450 MHz	32 bits 64-bit bus	~510
Pentium 4	2000	42,000,000	0.18	1.5 GHz	32 bits 64-bit bus	~1,70
Pentium 4 "Prescott"	2004	125,000,000	0.09	3.6 GHz	32 bits 64-bit bus	~7,00

