
 27

Chapter 3: Control Structures

1. Higher order organization of Python instructions

In the previous chapters, we have introduced the different types of variables known by Python,
as well as the operators that manipulate these variables. The programs we have studied so far
have all been sequential, with each line corresponding to one instruction: this is definitely not
optimal. For example, we have introduced in the previous chapter the concept of lists and arrays,
to avoid having to use many scalar variables to store data (remember that if we were to store the
whole human genome, we would need either 30,000 scalar variables, one for each gene, or a
single array, whose items are the individual genes); if we wanted to perform the same operation
on each of these genes, we would still have to write one line for each gene. In addition, the
programs we have written so far would attempt to perform all their instructions, once given the
input. Again, this is not always desired: we may want to perform some instructions only if a
certain condition is satisfied.
Again, Python has thought about these issues, and offers solutions in the form of control
structures: the if structure that allows to control if a block of instruction need to be executed, and
the for structure (and equivalent), that repeats a set of instructions for a preset number of times.
In this chapter, we will look in details on the syntax and usage of these two structures.

Figure 3.1: The three main types of flow in a computer program: sequential, in which
instructions are executed successively, conditional, in which the blocks “instructions 1” and
“instructions 2” are executed if the Condition is True or False, respectively, and repeating, in
which instructions are repeated over a whole list.

 28

2. Logical operators

Most of the control structure we will see in this chapter test if a condition is true or false. For
programmers, “truth” is easier to define in terms of what is not truth! In Python, there is a short,
specific list of false values:

• An empty string, “ “, is false
• The number zero and the string “0” are both false.
• An empty list, (), is false.
• The singleton None (i.e. no value) is false.

Everything else is true.

2.1 Comparing numbers and strings

We can test whether a number is bigger, smaller, or the same as another. Similarly, we can test if
a string comes before or after another string, based on the alphabetical order. All the results of
these tests are TRUE or FALSE. Table 3.1 lists the common comparison operators available in
Python.

Notice that the numeric operators look a little different from what we have learned in Math: this
is because Python does not use the fancy fonts available in text editors, so symbols like ≠, ≤, ≥
do not exist. Notice also that the numeric comparison for equality uses two = symbols (==): this
is because the single = is reserved for assignment.

Table 3.1 : Python comparison operators

comparison Corresponding question

a == b Is a equal to b ?

a != b Is a not equal to b ?

a > b Is a greater than b ?

a >= b Is a greater than or equal to b ?

a < b Is a less than b ?

a <= b Is a less than or equal to b ?

a in b Is the value a in the list (or tuple) b?

a not in b Is the value a not in the list (or tuple) b?

These comparisons apply both to numeric value and to strings. Note that you can compare
numbers to strings, but the result can be arbitrary: I would strongly advise to make sure that the
types of the variables that are compared are the same!

 29

2.2 Combining logical operators

We can join together several tests into one, by the use of the logical operator and and or

3. Conditional structures

3.1 If

The most fundamental control structure is the if structure. It is used to protect a block of code
that only needs to be executed if a prior condition is met (i.e. is TRUE). The generate format of
an if statement is:

Note about the format:

- the : indicates the end of the condition, and flags the beginning of the end structure
- Notice that the code block is indented with respect to the rest of the code: this is required;

it allows you to clearly identify which part of the code is conditional to the current
condition.

The condition is one of the logical expressions we have seen in the previous section. The code
block is a set of instructions grouped together. The code block is only executed if the condition is
TRUE.

if statements are very useful to check inputs from users, to check if a variable contains 0 before it
is used in a division,….

As example, let us write a small program that asks the user to enter a number, reads it in, and
checks if it is divisible by n, where n is also read in:

a and b True if both a and b are true.

a or b True if either a, or b, or both are true.

not a True if a is false.

>>> if condition:
 code block

number=int(raw_input(“Enter your number --> “))
n=int(raw_input(“Test divisibility by --> “))
i=number%n
if i != 0:
 print “The number “,number,” is not divisible by “,n,”\n”

 30

3.2 Else

When making a choice, sometimes you have two different things you want to do, depending
upon the outcome of the conditional. This is done using an if …else structure that has the
following format:

Block code 1 is executed if the condition is true, and block code 2 is executed otherwise.
Here is an example of a program asking for a password, and comparing it with a pre-stored
string:

Python also provides a control structure when there are more than two choices: the elif structure
is a combination of else and if. It is written as:

Note that any numbers of elif can follow an if.

4. Loops

One of the most obvious things to do with an array is to apply a code block to every item in the
array: loops allow you to do that.
Every loop has three main parts:

• An entry condition that starts the loop
• The code block that serves as the “body” of the loop
• An exit condition

if condition:
 block code 1
else:
 block code 2

hidden=”Mypasscode”
password=raw_input(“Enter your password : “)
if password == hidden:
 print “You entered the right password\n”
else:
 print “Wrong password !!\n”;

if CONDITION1:
 block code 1
elif CONDITION2:
 block code 2
else :
 block code 3

 31

Obviously, all three are important. Without the entry condition, the loop won’t be executed; a
loop without body won’t do any thing; and finally, without a proper exit condition, the program
will never exit the loop (this leads to what is referred to an infinite loop, and often results from a
bug in the exit loop).
There are two types of loops: determinate and indeterminate. Determinate loops carry their end
condition with them from the beginning, and repeat its code block an exact number of times.
Indeterminate loops rely upon code within the body of the loop to alter the exit condition so the
loop can exit. We will see one determinate loop structure, for, and one indeterminate loop
structure, while.

4.1 For loop

The most basic type of determinate loop is the for loop. Its basic structure is:

Note the syntax similar to the syntax of an if statement: the : at the end of the condition, and the
indentation of the code block.

A for loop is simple: it loops over all possible values of variable as found in the list listA,
executing each time the code block.

For example, the Python program:

Will print out:

Note that if the list is empty the loop is not executed at all.

The for loop is very useful for iterating over the elements of an array. It can also be used to loop
over a set of integer values: remember that you can create a list of integers using the function

for variable in listA:
 code block

>>> names=[“John”,”Jane”,”Smith”]
>>> j=0
>>> for name in names:
 j+=1
 print “The name number “,j,” in the list is “,name

The name number 1 in the list is ‘John’
The name number 2 in the list is ‘Jane’
The name number 3 in the list is ‘Smith’

 32

range. Here is an example program that computes the sum of the squares of the numbers from 0
to N, where N in read as input:

4.2 While loop

Sometimes, we face a situation where neither Python nor we know in advance how many times a
loop will need to execute. This is the case for example when reading a file: we do not know in
advance how many lines it has. Python has a structure for that: the while loop:

The while structure executes the code block as long as the TEST expression evaluates as TRUE.
For example, here is a program that prints the number between 0 and N, where N is input:

Note that it is important to make sure that the code block includes a modification of the test: if
we had forgotten the line i+=1 in the example above, the while loop would have become an
infinite loop.

Note that any for loop can be written as a while loop. In practice however, it is better to use a for
loop, as Python executes them faster

4.3 Break points in loops

Python provides two functions that can be used to control loops from inside its code block:
break allows you to exit the loop, while continue skips the following step in the loop.

while TEST:
 code block;

>>> N=int(raw_input(“Enter N --> “))
>>> print “Counting numbers from 0 to “,N,”\n”
 i=0
while i < N+1:
 print i,”\n”
 i+=1

>>> N=int(raw_input(“Enter the last integer considered --> “))
>>> Sum=0
>>> for i in range(0,N+1,1):
 Sum+=i**2
>>> print “The sum of the squares between 0 and “,N,” is “,Sum

 33

Here is an example of a program that counts and prints number from 1 to N (given as input),
skipping numbers that are multiples of 5 and stopping the count if the number reached squared is
equal to N:

Exercises:

1. Write a program that reads in an integer value n and outputs n! (Reminder:

n!=1x2x3x4….xn).

2. Write a program that reads in a word, and writes it out with the letters at even positions in
uppercase, and the letters at odd positions in lower case.

3. In cryptography, the Ceasar cipher is a type of substitution cipher in which each letter in the

plaintext is replaced by a letter some fixed number of positions down the alphabet. For
example, with a shift of 3, A would be replaced by D, B would become E, …, X would
become A, Y would become B, and Z would become C.

a. Write a program that reads in a sentence, and substitutes it using the Ceasar cipher

with a shift of 3.
b. Write a program that reads in sentence that has been encrypted with the Ceasar

cipher with a shift of 3, and decrypts it.
c. Repeat a and b above for a Ceasar cipher with a shift N, where N is given as

input, N between 0 and 10

>>> N = int(raw_input(“Enter N --> “)) # Input N
>>> for i in range(0,N+1,1): # Start loop from 0 to N (N included)
 if i**2 == N: # test if i**2 is equal to N…
 break # if it is stop counting
 else:

if i%5==0: # Test if i is a multiple of 5
 continue # if it is, move to next value
print i,”\n”

