Computers Logic and CPU

Patrice Koehl Computer Science UC Davis

Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer

Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer

The concept of pressure

When we remove the block, what is the effect on pressure?

The concept of pressure

When we remove the block, what is the effect on pressure?

Electrical pressure: voltage

If switch is off (0) (equivalent to the presence of the block)

If switch is on (1) (equivalent to the absence of the block)

$$V_{output} << V_{cc} low (i.e. 0)$$

"Inverter"

The transistor

A transistor can be used as an electronic switch:

-if V_{base} is high, the current "flows" between the emitter and the collector (switch is on)

-If V_{base} is low, the current does not pass (switch is off)

The not gate

Input	Output	
0	1	
1	0	

The not-and (NAND) gate

Input A	Input B	Output
1	1	0
1	0	1
0	1	1
0	0	1

The AND gate

The not-or (NOR) gate

Input A	Input B	Output
1	1	0
1	0	0
0	1	0
0	0	1

The OR gate

Input A	Input B	Output
1	1	1
1	0	1
0	1	1
0	0	0

Туре	Distinctive shape	Rectangular shape	Boolean algebra between A & B	Truth table	
				INPUT OUTP	TU
		&	$A\cdot B$	A B A AND	DВ
AND				0 0 0	
AND				0 1 0	
				1 0 0	
				1 1 1	
				INPUT OUTP	PUT
				A B AOR	
		_51		0 0 0	
OR		⊒ ≥1	A + B	0 1 1	
				1 0 1	
				1 1 1	
				INPUT OUTP	
NOT	├		\overline{A}	0 1	^
				1 0	
		<u>~</u>	$\overline{A\cdot B}$	INPUT OUTPL	UT
				A B A NAND	DΒ
NAND	— —			0 0 1	
NAND				0 1 1	
				1 0 1	
				1 1 0	
			$\overline{A+B}$	INPUT OUTP	тис
				A B A NOF	
NOR		≥1		0 0 1	
				0 1 0	
				1 0 0	
				1 1 0	

Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer

The Central Process Unit (CPU)

The CPU consists of three parts: the Arithmetic Logic Unit (ALU) The Control Unit Memory

The Fetch/Execute Cycle

The CPU cycles through a series of operations or instructions, organized in a cycle, the Fetch/Execute cycle:

- 1. Instruction Fetch (IF)
- 2. Instruction Decode (DP)
- 3. Data Fetch (DF)
- 4. Instruction Execute (IE)
- 5. Result Return

Step 1: Instruction Fetch

Fetch instruction from memory position 2200:

Add numbers in memory positions 884 and 428, and store results at position 800

Step 2: Instruction Decode

Decode instruction:

Defines operation (+), and set memory pointers in ALU

Step 3: Data Fetch

Fetch data:

Get numbers at memory positions 428 and 884: 42 and 12 and put in ALU

Step 4: Instruction Execution

Execute:

Add numbers 42 and 12 in ALU: 54

Step 5: Return Result

Return:

Put results (54) in position 800 in memory

Possible operations

Computers can only perform about 100 different types of operations; all other operations must be broken down into simpler operations among these 100.

Some of these operations:

- -Add, Mult, Div
- -AND, OR, NAND, NOR, ...
- -Bit shifts
- -Test if a bit is 0 or 1
- -Move information in memory

-...

Repeating the F/E cycle

Computers get their impressive capabilities by performing many of these F/E cycles per second.

The computer clock determines the rate of F/E cycles per second; it is now expressed in GHz, i.e. in billions of cycles per seconds!

Note that the rate given is not an exact measurement.

Moore's Law - The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

(http://en.wikipedia.org/wiki/Accelerating_change)

Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer

Computer: basic scheme

The Central Process Unit (CPU)

CPUs are getting smaller, and can include more than one "core" (or processors).

CPUs get hot, as their internal components dissipate heat: it is important to add a heat sink and fans to keep them cool.

The motherboard: backbone of the computer

Power supply connector

Slot for memory: RAM

Slot for CPU

Input/Output: Keyboard, Mouse, ... Extension

Extension cards: Video, sound, internet...

Communications on the mother board

