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5.1 Mathematical Induction 329

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed
integer b.

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step.”
4. State, and clearly identify, the inductive hypothesis, in the form “assume that P(k) is true

for an arbitrary fixed integer k ≥ b.”
5. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.
6. Prove the statement P(k + 1) making use the assumption P(k). Be sure that your proof

is valid for all integers k with k ≥ b, taking care that the proof works for small values
of k, including k = b.

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

8. After completing the basis step and the inductive step, state the conclusion, namely that
by mathematical induction, P(n) is true for all integers n with n ≥ b.

It is worthwhile to revisit each of the mathematical induction proofs in Examples 1–14 to see
how these steps are completed. It will be helpful to follow these guidelines in the solutions of the
exercises that ask for proofs by mathematical induction. The guidelines that we presented can
be adapted for each of the variants of mathematical induction that we introduce in the exercises
and later in this chapter.

Exercises

1. There are infinitely many stations on a train route. Sup-
pose that the train stops at the first station and suppose
that if the train stops at a station, then it stops at the next
station. Show that the train stops at all stations.

2. Suppose that you know that a golfer plays the first hole of
a golf course with an infinite number of holes and that if
this golfer plays one hole, then the golfer goes on to play
the next hole. Prove that this golfer plays every hole on
the course.

Use mathematical induction in Exercises 3–17 to prove sum-
mation formulae. Be sure to identify where you use the in-
ductive hypothesis.

3. Let P(n) be the statement that 12 + 22 + · · · + n2 =
n(n+ 1)(2n+ 1)/6 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f ) Explain why these steps show that this formula is true
whenever n is a positive integer.

4. Let P(n) be the statement that 13 + 23 + · · · + n3 =
(n(n+ 1)/2)2 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f ) Explain why these steps show that this formula is true
whenever n is a positive integer.

5. Prove that 12 + 32 + 52 + · · · + (2n+ 1)2 = (n+ 1)

(2n+ 1)(2n+ 3)/3 whenever n is a nonnegative integer.

6. Prove that 1 · 1! + 2 · 2! + · · · + n · n! = (n+ 1)! − 1
whenever n is a positive integer.

7. Prove that 3+ 3 · 5+ 3 · 52+ · · ·+ 3 · 5n=3(5n+1− 1)/4
whenever n is a nonnegative integer.

8. Prove that 2− 2 · 7+ 2 · 72 − · · · + 2(−7)n = (1−
(−7)n+1)/4 whenever n is a nonnegative integer.
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9. a) Find a formula for the sum of the first n even positive
integers.

b) Prove the formula that you conjectured in part (a).

10. a) Find a formula for

1

1 · 2 +
1

2 · 3 + · · · +
1

n(n+ 1)

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

11. a) Find a formula for

1

2
+ 1

4
+ 1

8
+ · · · + 1

2n

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

12. Prove that
n∑

j=0

(
−1

2

)j

= 2n+1 + (−1)n

3 · 2n

whenever n is a nonnegative integer.

13. Prove that 12 − 22 + 32 − · · · + (−1)n−1n2 = (−1)n−1

n(n+ 1)/2 whenever n is a positive integer.

14. Prove that for every positive integer n,
∑n

k= 1 k2k =
(n− 1)2n+1 + 2.

15. Prove that for every positive integer n,

1 · 2+ 2 · 3+ · · · + n(n+ 1) = n(n+ 1)(n+ 2)/3.

16. Prove that for every positive integer n,

1 · 2 · 3+ 2 · 3 · 4+ · · · + n(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2)(n+ 3)/4.

17. Prove that
∑n

j = 1 j4 = n(n+ 1)(2n+ 1)(3n2+ 3n−1)/30
whenever n is a positive integer.

Use mathematical induction to prove the inequalities in Exer-
cises 18–30.

18. Let P(n) be the statement that n! < nn, where n is an
integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
19. Let P(n) be the statement that

1+ 1

4
+ 1

9
+ · · · + 1

n2 < 2− 1

n
,

where n is an integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.

c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
20. Prove that 3n< n! if n is an integer greater than 6.
21. Prove that 2n > n2 if n is an integer greater than 4.
22. For which nonnegative integers n is n2 ≤ n!? Prove your

answer.
23. For which nonnegative integers n is 2n+ 3 ≤ 2n? Prove

your answer.
24. Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n− 1)]/(2 · 4 ·
· · · · 2n) whenever n is a positive integer.

∗25. Prove that if h > −1, then 1+ nh ≤ (1+ h)n for all non-
negative integers n. This is called Bernoulli’s inequality.

∗26. Suppose that a and b are real numbers with 0 < b < a.
Prove that if n is a positive integer, then an − bn ≤
nan−1(a − b).

∗27. Prove that for every positive integer n,

1+ 1√
2
+ 1√

3
+ · · · + 1√

n
> 2(
√

n+ 1− 1).

28. Prove that n2 − 7n+ 12 is nonnegative whenever n is an
integer with n ≥ 3.

In Exercises 29 and 30, Hn denotes the nth harmonic number.
∗29. Prove that H2n ≤ 1+ n whenever n is a nonnegative in-

teger.
∗30. Prove that

H1 +H2 + · · · +Hn = (n+ 1)Hn − n.

Use mathematical induction in Exercises 31–37 to prove di-
visibility facts.
31. Prove that 2 divides n2 + n whenever n is a positive in-

teger.
32. Prove that 3 divides n3 + 2n whenever n is a positive

integer.
33. Prove that 5 divides n5 − n whenever n is a nonnegative

integer.
34. Prove that 6 divides n3 − n whenever n is a nonnegative

integer.
∗35. Prove that n2 − 1 is divisible by 8 whenever n is an odd

positive integer.
∗36. Prove that 21 divides 4n+1 + 52n−1 whenever n is a pos-

itive integer.
∗37. Prove that if n is a positive integer, then 133 divides

11n+1 + 122n−1.
Use mathematical induction in Exercises 38–46 to prove re-
sults about sets.
38. Prove that if A1, A2, . . . , An and B1, B2, . . . , Bn are sets

such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n⋃

j = 1

Aj ⊆
n⋃

j = 1

Bj .


