Data, Logic, and Computing

ECS 17 (Winter 2024)

Patrice Koehl
koehl@cs.ucdavis.edu
February 18, 2024

Homework 8 - For 3/06/2024

Exercise 1: 10 points

Using induction, show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Exercise 2: 10 points

Using induction, show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.

Exercise 3: 10 points

Show that $\forall n \in \mathbb{N}, n>1, \sum_{i=1}^{n} \frac{1}{i^{2}}<2-\frac{1}{n}$.

Exercise 4: 10 points

Use a proof by induction to show that $\forall n \in \mathbb{N}, n>3, n^{2}-7 n+12 \geq 0$.

Exercise 5: 10 points

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of natural numbers is defined by $a_{0}=2$ and $a_{n+1}=\left(a_{n}\right)^{2}, \quad \forall n \in \mathbb{N}$. Find a closed form formula for the term a_{n} and prove that your formula is correct.

Exercise 6: 10 points

Show that $\forall n \in \mathbb{N} f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ where f_{n} are the Fibonacci numbers.

Exercise 7: 10 points

Show that $\forall n \in \mathbb{N} f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$ where f_{n} are the Fibonacci numbers.

Exercise 8: 10 points

Use the method of proof by induction to show that any amount of postage of 12 cents or more can be formed using just 4 -cent and 5 -cent stamps.

