Discrete Mathematics

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
January 2, 2019

Discussion 1-1/09-1/15

Exercise 1

Let a and b be two real numbers.
a) Show that $\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$

Let LHS $=\left(a^{2}+b^{2}\right)^{2}$ and RHS $=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$. Then:

$$
L H S=a^{4}+b^{4}+2 a^{2} b^{2}
$$

and

$$
\begin{aligned}
\text { RHS } & =a^{4}+b^{4}-2 a^{2} b^{2}+4 a^{2} b^{2} \\
& =a^{4}+b^{4}+2 a^{2} b^{2}
\end{aligned}
$$

Therefore $L H S=R H S$ for all a and b, and the identity is true.
b) $a^{4}-b^{4}=(a-b)(a+b)\left(a^{2}+b^{2}\right)$

Let LHS $=a^{4}-b^{4}$ and RHS $=(a-b)(a+b)\left(a^{2}+b^{2}\right)$. Then:

$$
\begin{aligned}
R H S & =\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right) \\
& =a^{4}-b^{4}
\end{aligned}
$$

Therefore $L H S=R H S$ for all a, b, and the identity is true.

Exercise 2

a) Show that there are no positive integer number n such that $n^{2}+n^{3}=100$

Let n be a positive integer. Since $n>=0, n^{2}>=0$ and $n^{3}>=0$. We note first that if $n \geq 5$, then $n^{3} \geq 125$, i.e. $n^{3}>100$, and therefore $n^{2}+n^{3}>100$. The only possible solutions are therefore $n=0, n=1, n=2, n=3$, and $n=4$. We test each of those values separately:
i) $n=0$ then $n^{2}+n^{3}=0 \neq 100 . n=0$ is not a solution.
ii) $n=1$ then $n^{2}+n^{3}=2 \neq 100 . n=1$ is not a solution.
iii) $n=2$ then $n^{2}+n^{3}=12 \neq 100 . n=2$ is not a solution.
iv) $n=3$ then $n^{2}+n^{3}=36 \neq 100 . n=3$ is not a solution.
v) $n=4$ then $n^{2}+n^{3}=80 \neq 100 . n=4$ is not a solution.

Therefore there are no positive integer number n such that $n^{2}+n^{3}=100$.
b) Prove that there are no solutions in integers x and y to the equation $2 x^{2}+5 y^{2}=14$.

Let x and y be two integers. We note first that $x^{2} \geq 0$ and $y^{2} \geq 0$. Then, if $y \leq-2$ or $y \geq 2$, $y^{2} \geq 4$ and $5 y^{2} \geq 20$. Therefore we can conclude that $y=-1, y=0$, or $y=1$. We look at all three cases separately:
i) $y=-1$ or $y=1$; then $2 x^{2}=9$; the left hand side is even, while the right hand side is odd: this equation has no solution.
ii) $y=0$ then $2 x^{2}=14$ or $x^{2}=7$. We check all possible values of x :

* $x=0$; then $x^{2}=0 \rightarrow$ No.
* $x=1$ or $x=-1$; then $x^{2}=1 \rightarrow$ No.
* $x=2$ or $x=-2$; then $x^{2}=4 \rightarrow$ No.
* $x \geq 3$ or $x<l e q-3$ then $x^{2} \geq 9 \rightarrow$ No.

Therefore there are no integers x and y that satisfy the equation $2 x^{2}+5 y^{2}=14$.

Exercise 3

Let x be a real number. Solve $\sqrt{x^{2}-7}=\sqrt{1-x^{2}}$
We need to define the domain of the equation first. This equation involves two square root functions that are defined if and only if their arguments are positive. Therefore: $D=\{x \in$ $\mathbb{R} \mid x^{2}-7 \geq 0$ and $\left.1-x^{2} \geq 0\right\}$.

Let us look at both conditions:
i) $x^{2}-7 \geq 0$ implies that $x \leq \sqrt{7}$ or $x \geq \sqrt{7}$
ii) $1-x^{2} \geq 0$ implies that $-1 \leq x \leq 1$

These two conditions are incompatible. Therefore $D=\emptyset$, and the equation does not have any solutions.

Exercise 4

Three consecutive integers add up to 51 . What are those three integers?
Let a be an integer. The two integers that follow a are $a+1$ and $a+2$. Therefore:

$$
\begin{aligned}
a+a+1+a+2 & =51 \\
3 a+3 & =51 \\
3 a & =48 \\
a & =16
\end{aligned}
$$

Therefore the three consecutive integers that add up to 51 are 16,17 , and 18.

