Discrete Mathematics

ECS 20 (Winter 2019)

Patrice Koehl koehl@cs.ucdavis.edu

January 2, 2019

Discussion 1 - 1/09-1/15

Exercise 1

Let a and b be two real numbers.

a) Show that $(a^2 + b^2)^2 = (a^2 - b^2)^2 + (2ab)^2$ Let $LHS = (a^2 + b^2)^2$ and $RHS = (a^2 - b^2)^2 + (2ab)^2$. Then:

$$LHS = a^4 + b^4 + 2a^2b^2$$

and

$$RHS = a^{4} + b^{4} - 2a^{2}b^{2} + 4a^{2}b^{2}$$
$$= a^{4} + b^{4} + 2a^{2}b^{2}$$

Therefore LHS = RHS for all a and b, and the identity is true.

b)
$$a^4 - b^4 = (a - b)(a + b)(a^2 + b^2)$$

Let $LHS = a^4 - b^4$ and $RHS = (a - b)(a + b)(a^2 + b^2)$. Then:

$$RHS = (a^2 - b^2)(a^2 + b^2) = a^4 - b^4$$

Therefore LHS = RHS for all a, b, and the identity is true.

Exercise 2

a) Show that there are no positive integer number n such that $n^2 + n^3 = 100$

Let n be a positive integer. Since $n \ge 0$, $n^2 \ge 0$ and $n^3 \ge 0$. We note first that if $n \ge 5$, then $n^3 \ge 125$, i.e. $n^3 > 100$, and therefore $n^2 + n^3 > 100$. The only possible solutions are therefore n = 0, n = 1, n = 2, n = 3, and n = 4. We test each of those values separately:

- i) n = 0 then $n^2 + n^3 = 0 \neq 100$. n = 0 is not a solution.
- ii) n = 1 then $n^2 + n^3 = 2 \neq 100$. n = 1 is not a solution.
- iii) n = 2 then $n^2 + n^3 = 12 \neq 100$. n = 2 is not a solution.
- iv) n = 3 then $n^2 + n^3 = 36 \neq 100$. n = 3 is not a solution.
- v) n = 4 then $n^2 + n^3 = 80 \neq 100$. n = 4 is not a solution.

Therefore there are no positive integer number n such that $n^2 + n^3 = 100$.

b) Prove that there are no solutions in integers x and y to the equation $2x^2 + 5y^2 = 14$.

Let x and y be two integers. We note first that $x^2 \ge 0$ and $y^2 \ge 0$. Then, if $y \le -2$ or $y \ge 2$, $y^2 \ge 4$ and $5y^2 \ge 20$. Therefore we can conclude that y = -1, y = 0, or y = 1. We look at all three cases separately:

- i) y = -1 or y = 1; then $2x^2 = 9$; the left hand side is even, while the right hand side is odd: this equation has no solution.
- ii) y = 0 then $2x^2 = 14$ or $x^2 = 7$. We check all possible values of x:
 - * x = 0; then $x^2 = 0 \rightarrow$ No.
 - * x = 1 or x = -1; then $x^2 = 1 \rightarrow \text{No.}$
 - * x = 2 or x = -2; then $x^2 = 4 \rightarrow No$.
 - * $x \ge 3$ or x < leq 3 then $x^2 \ge 9 \rightarrow$ No.

Therefore there are no integers x and y that satisfy the equation $2x^2 + 5y^2 = 14$.

Exercise 3

Let x be a real number. Solve $\sqrt{x^2 - 7} = \sqrt{1 - x^2}$

We need to define the domain of the equation first. This equation involves two square root functions that are defined if and only if their arguments are positive. Therefore: $D = \{x \in \mathbb{R} \mid x^2 - 7 \ge 0 \text{ and } 1 - x^2 \ge 0\}.$

Let us look at both conditions:

i) $x^2 - 7 \ge 0$ implies that $x \le \sqrt{7}$ or $x \ge \sqrt{7}$

ii) $1 - x^2 \ge 0$ implies that $-1 \le x \le 1$

These two conditions are incompatible. Therefore $D = \emptyset$, and the equation does not have any solutions.

Exercise 4

Three consecutive integers add up to 51. What are those three integers?

Let a be an integer. The two integers that follow a are a + 1 and a + 2. Therefore:

$$a + a + 1 + a + 2 = 51$$
$$3a + 3 = 51$$
$$3a = 48$$
$$a = 16$$

Therefore the three consecutive integers that add up to 51 are 16, 17, and 18.