Discussion 3: Solutions

ECS 20 (Winter 2019)

Patrice Koehl
koehl@cs.ucdavis.edu
January 22, 2019

Exercise 1

Let p and q be two propositions. The proposition $p N O R q$ is true when both p and q are false, and it is false otherwise. It is denoted $p \downarrow q$.
a) Write down the truth table for $p \downarrow q$

p	q	$p \downarrow q$
T	T	F
T	F	F
F	T	F
F	F	T

b) Show that $p \downarrow q$ is equivalent to $\neg(p \vee q)$

p	q	$p \downarrow q$	$p \vee q$	$(\neg(p \vee q)$
T	T	F	T	F
T	F	F	T	F
F	T	F	T	F
F	F	T	F	T

Therefore $p \downarrow q$ is equivalent to $\neg(p \vee q)$
c) Find a compound proposition logically equivalent to $p \rightarrow q$ using only the logical operator \downarrow.

p	q	$p \downarrow p$	$(p \downarrow p) \downarrow q$	$((p \downarrow p) \downarrow q) \downarrow((p \downarrow p) \downarrow q)$	$p \rightarrow q$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	F	T	T

Exercise 2

Let $P(x)$ be the statement " $x=x^{2}$ ". If the domain consists of the integers, what are the truth values of the following statements:
a) $P(0)$
$P(0): 0=0^{2}$: true
b) $P(1)$
$P(1): 1=1^{2}$: true
c) $P(2)$
$P(2): 2=2^{2}$: false
d) $P(-1)$
$P(-1):-1=(-1)^{2}$: false
e) $\exists x P(x)$

The statement is true: $P(1)$ is true: proof by example
f) $\forall x P(x)$

The statement is false: $P(2)$ is false: proof by counter-example

Exercise 3

Express each of these statements using quantifiers. Then form the negation of the statement so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that.")
a) All dogs have fleas.
$\forall d \in \operatorname{Dogs}, d$ has fleas.
Negation: There exists a dog that does not have flea.
b) There exists a horse that can add.
$\exists h \in$ Horses, h can count.
Negation: All horses cannot add.
c) Every koala can climb.
$\forall k \in$ Koalas, k can climb.
Negation: There exists koala that cannot climb.
d) No monkey can speak French.
$\forall m \in$ Monkeys, $k \mathrm{~m}$ cannot speak French.
Negation: There is a monkey that can speak French
e) There exists a pig that can swim and catch fish.
$\exists p \in \operatorname{Pigs}, p$ can swim and catch fish.
Negation: Every pig either cannot swim, or cannot catch fish.

Exercise 4

a) Let a and b be two integers. Prove that if $n=a b$, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

We use a proof by contradiction. Let us suppose that $a>\sqrt{n}$ and $b>\sqrt{n}$. Then $a b>n$, i.e. $n>n$. We have reached a contradiction. Therefore the property is true.
b) Prove or disprove that there exists x rational and y irrational such that x^{y} is irrational.

Let $x=2$ and $y=\sqrt{2}$. Then $x^{y}=2^{\sqrt{2}}$. There are two cases:
$-2^{\sqrt{2}}$ is irrational. We are done
$-2^{\sqrt{2}}$ is rational. Let us define then $x=2^{\sqrt{2}}$ and $y=\frac{\sqrt{2}}{4}$. Then

$$
\begin{aligned}
x^{y} & =\left(2^{\sqrt{2}}\right)^{\frac{\sqrt{2}}{4}} \\
& =2^{\frac{\sqrt{2} \sqrt{2}}{4}} \\
& =2^{\frac{1}{2}} \\
& =\sqrt{2}
\end{aligned}
$$

i.e. x^{y} is irrational.

We have shown that there exists x rational and y irrational such that x^{y} is irrational but we do not know the values of x and y : non-constructive proof.
c) There exists no integers a and b such that $21 a+30 b=1$.

We do a proof by contradiction. Let us suppose that there exists two integers a and b such that $21 a+30 b=1$. Then $3(7 a+10 b)=1$. Since $7 a+10 b$ is an integer, 1 would be a multiple of 3 ; we have reached a contradiction. Therefore the property is true.

