Discussion 4: Solutions

ECS 20 (Winter 2019)

Patrice Koehl

koehl@cs.ucdavis.edu
January 30- February 5, 2019

Exercise 1

We use a proof by membership.
Let $x \in B \cap C$; by definition of the intersection, $x \in B$ and $x \in C$. Since $x \in B$ and $B \subseteq A$, we conclude that $x \in A$. Therefore $B \cap C \subseteq A$.

Let $x \in B \cup C$; by definition of the union, $x \in B$ or $x \in C$. If $x \in B$ and $B \subseteq A$, we conclude that $x \in A$. If $x \in C$ and $C \subseteq A$, we conclude that $x \in A$. In all cases, $x \in A$. Therefore $B \cup C \subseteq A$.

Exercise 2

- a. Let us define $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$. The $A-B=\{1,2\}$ and $B-A=\{5,6\}$.
- b. Let us define $A=\{1,2,3,4\}, B=\{5,6,7\}$ and $C=\{3,4,8,9\}$. Then $(A \cap B) \cup C=C=$ $\{3,4,8,9\}$ and $(A \cap C) \cup B=\{3,4,5,6,7\}$.

Exercise 3

We use a membership table:

A	B	$A-B$	$B-A$	$(A-B) \cup(B-A)$	$A \cup B$	$A \cap B$	$(A \cup B)-(A \cap B)$
						1	1

Column 5 and 8 are equal: the two sets are equal.

Exercise 4

The only difficulty is to translate the problem in math.

We define D the set of tiles (this is the "universe", or "domain"), S the subset of squares, T the set of triangles, R the set of red tiles and B the set of blue tiles.

We know:

- $|D|=19$ (there are 19 tiles total)
- $|S|=12$ (there are 12 squares)
- $|R|=11$ (there are 11 red tiles)
- $|S \cap B|=4$ (there are 4 blue squares)
- $S \cup T=D$ and $S \cap T=\emptyset$
- $R \cup B=D$ and $R \cap B=\emptyset$

We directly deduce:

- $|D|=|S|+|T|$, therefore $|T|=7$
- $|D|=|R|+|B|$, therefore $|B|=8$
- $S=(S \cap R) \cup(S \cap B)$ and $(S \cap R) \cap(S \cap B)=S \cap R \cap B=\emptyset$, therefore $|S \cap R|=|S|-|S \cap B|=8$
- A) The number of tiles that are square or blue:

First, we observe that there are 8 blue tiles. Then: $|S \cup B|=|S|+|B|-|S \cap B|=12+8-4=16$

- B)The number of tiles that are triangles and red:
$|T \cap R|=3$
- C) The number of tiles that are red or squares: $|S \cup R|=|S|+|R|-|S \cap R|=12+11-8=15$

Exercise 5

Show that $\overline{A-B}=\bar{A} \cup B$.
We use a membership table:

A	B	$A-B$	$\overline{A-B}$	\bar{A}	$\bar{A} \cup B$
1	1	0	1	0	1
1	0	1	0	0	0
0	1	0	1	1	1
0	0	0	1	1	1

Column 4 and 6 are equal: the two sets are equal.

