ECS20

Discussion 4: 1/30 to 2/05 2019

Exercise 1

Suppose that $B \subseteq A$ and $C \subseteq A$. Show that $(B \cap C) \subseteq A$ and $(B \cup C) \subseteq A$

Exercise 2

Find counter-examples for each of the following (incorrect) assertions:
a) $A-B=B-A$
b) $(A \cap B) \cup C=(A \cap C) \cup B$

Exercise 3

Show that:
$(A-B) \bigcup(B-A)=(A \bigcup B)-(A \bigcap B)$

Exercise 4

Each tile in a collection of 19 is a square or a triangle and is also red or blue. Suppose that 12 of the 19 tiles are squares. 11 are red, and 4 are blue squares. Using the inclusionexclusion principle, determine:
(1) The number of tiles that are square or blue;
(2) The number of tiles that are triangles and red;
(3) The number of tiles that are red or squares.

Exercise 5

Show that: $\overline{A-B}=\bar{A} \cup B$

