Discussion 5: Solutions

ECS 20 (Winter 2019)

Patrice Koehl

koehl@cs.ucdavis.edu
February 6 - February 13, 2019

Exercise 0: Additional problems on proofs

- a) Let x and y be two integers. Show that if $2 x+5 y=14$ and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:
$p: 2 x+5 y=14$ and $y \neq 2$
$q: x \neq 2$
We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.
Hypothesis: $p \rightarrow q$ is false, which is equivalent to saying that p is true, AND q is false.
Therefore, $2 x+5 y=14$ and $y \neq 2$ and $x=2$. Replacing x by its value in the first equation, we get $4+5 y=14$, namely $y=2$. Therefore we have $y=2$ and $y \neq 2$: we have reached a contradiction.
Therefore the hypothesis is false, which means that $p \rightarrow q$ is true.

- b) Let x and y be two integers. Show that if $x^{2}+y^{2}$ is odd, then $x+y$ is odd

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:
$p: x^{2}+y^{2}$ is odd
$q: x+y$ is odd
We will use an indirect proof, namely instead of showing that $p \rightarrow q$, we will show the equivalent property $\neg q \rightarrow \neg p$, where:
$\not q: x+y$ is even
$p p: x^{2}+y^{2}$ is even
Hypothesis: $\neg q$ is true, namely $x+y$ is even. Since $x+y$ is even, $(x+y)^{2}$ is even (result from class). Therefore there exists an integer k such that $(x+y)^{2}=2 k$. We note also that:
$(x+y)^{2}=x^{2}+y^{2}+2 x y$,
Therefore,
$x^{2}+y^{2}=2 k-2 x y=2(k-x y)$
Since $k-x y$ is an integer, we conclude that $x^{2}+y^{2}$ is even, namely that $\not p$ is true.
We have shown that $\neg q \rightarrow \neg p$ is true; we can conclude that $p \rightarrow q$ is true.

Exercise 1

To show that f is bijective (or not) from \mathbb{R} to \mathbb{R}, we need to check: (i) that it is a function, (ii) that it is one-to-one (injective), and (iii) that it is onto (surjective).

- a) $f(x)=2 x+4$
(i) f is a function from \mathbb{R} to \mathbb{R}, as its domain is \mathbb{R}
(ii) Let us show that f is injective. Let x and y be two real numbers such that $f(x)=f(y)$. Then $2 x+4=2 y+4$, therefore $x=y . f$ is injective.
(iii) Let us show that f is surjective. Let y be an element of the co-domain, \mathbb{R}. To find if there exists a real number x such that $f(x)=y$, we solve the equation $f(x)=y$, i.e. $2 x+4=y$. We find $x=\frac{y-4}{2}$, i.e. x exists for each value of $y . f$ is surjective.
We conclude that f is bijective.
- b) $f(x)=x^{2}+1$
(i) f is a function from \mathbb{R} to \mathbb{R}, as its domain is \mathbb{R}
(ii) Is f injective?. Let x and y be two real numbers such that $f(x)=f(y)$. Then $x^{2}+1=$ $y^{2}+1$, i.e. $x^{2}-y^{2}=0$. This leads to $(x-y)(x+y)=0$, therefore $x=y$ or $x=-y$. For example, $f(1)=f(-1): f$ is not injective; it is therefore not bijective.
- c) $f(x)=(x+1) /(x+2)$
(i) f is not a function from \mathbb{R} to \mathbb{R}, as it is not defined for $x=-2$. The domain D is $\mathbb{R}-\{-2\}$. It is a function from D to \mathbb{R}. Is it a bijection from D to \mathbb{R} ?
(ii) Let x and y be two real numbers such that $f(x)=f(y)$. Then $(x+1) /(x+2)=$ $(y+1) /(y+2)$, i.e. $(x+1)(y+2)=(y+1)(x+2)$. After development, we get $2 x+y=2 y+x$ i.e. $x=y$. The function is injective.
(iii) Let y be an element of the co-domain, \mathbb{R}. To find if there exists a real number x such that $f(x)=y$, we solve the equation $f(x)=y$, i.e. $(x+1) /(x+2)=y$. This becomes $x+1=y(x+2)$, i.e. $x(1-y)=2 y-1$, which has a solution if and only if $y \neq 1$. Therefore we found one element of the co-domain $(y=1)$ for which we cannot find an element x such that $f(x)=y . f$ is not surjective, therefore f is not bijective.
- d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$
(i) f is a function from \mathbb{R} to \mathbb{R}, as its domain is \mathbb{R}
(ii) Is f injective? We note that $f(1)=f(-1): f$ is not injective, therefore f is not bijective.

Exercise 2

Let $S=\{-1,0,2,4,7\}$. Find $f(S)$ if:

- a). $f(x)=1$

Since $f(x)=1$ for all elements of $S, f(S)=\{1\}$.

- b). $f(x)=2 x+1$ $f(-1)=-1, f(0)=1, f(2)=5, f(4)=9$, and $f(7)=15$. Therefore $f(S)=\{-1,1,5,9,15\}$.
- c). $f(x)=\left\lceil\frac{x}{5}\right\rceil$
$f(-1)=-1, f(0)=0, f(2)=0, f(4)=0$, and $f(7)=2$. Therefore $f(S)=\{-1,0,1\}$.
- d). $f(x)=\left\lceil\frac{x^{2}+1}{3}\right\rceil$
$f(-1)=0, f(0)=0, f(2)=1, f(4)=5$, and $f(7)=16$. Therefore $f(S)=\{0,1,5,16\}$.

Exercise 3

Let S be a subset of a universe U. The characteristic function f_{S} of S is the function from U to the set $\{0,1\}$ such that $f_{S}(x)=1$ if x belongs to S and $f_{S}(x)=0$ if x does not belong to S. Let A and B be two sets. Show that for all x in U,

- a). $f_{A \cap B}(x)=f_{A}(x) f_{B}(x)$

Let x be an element of U. Let us call $L H S(x)=f_{A \cap B}(x)$ and $R H S(x)=f_{A}(x) f_{B}(x)$. We distinguish two cases:
(i) $x \in A \bigcap B$. Then $\operatorname{LHS}(x)=f_{A \cap B}(x)=1$, by definition of $f_{A \cap B}$. Also, since $x \in A \bigcap B$, then $x \in A$ and $x \in B$, therefore $f_{A}(x)=1$ and $f_{B}(x)=1$, i.e. $\operatorname{RHS}(x)=1$.
(ii) $x \notin A \bigcap B$. Then $\operatorname{LHS}(x)=f_{A \cap B}(x)=0$, by definition of $f_{A \cap B}$. Also, since $x \notin A \bigcap B$, then $x \notin A$ or $x \notin B$, therefore $f_{A}(x)=0$ or $f_{B}(x)=0$, i.e. $R H S(x)=0$.
The property is therefore true for all x in U.

- b). $f_{A \cup B}(x)=f_{A}(x)+f_{B}(x)-f_{A}(x) f_{B}(x)$

Let x be an element of U. Let us call $L H S(x)=f_{A \cup B}(x)$ and $R H S(x)=f_{A}(x)+f_{B}(x)-$ $f_{A}(x) f_{B}(x)$. We distinguish four cases:
(i) $x \in A$ and $x \in B$. Then $\operatorname{LHS}(x)=f_{A \cap{ }_{B}}(x)=1$, as $x \in A \bigcup B$. Also, $f_{A}(x)=1$ and $f_{B}(x)=1$, therefore $\operatorname{RHS}(x)=1+1-1=1$.
(ii) $x \in A$ and $x \notin B$. Then $L H S(x)=f_{A \cap B}(x)=1$, as $x \in A \bigcup B$. Also, $f_{A}(x)=1$ and $f_{B}(x)=0$, therefore $\operatorname{RHS}(x)=1+0-0=1$.
(iii) $x \notin A$ and $x \in B$. Then $\operatorname{LHS}(x)=f_{A \cap B}(x)=1$, as $x \in A \bigcup B$. Also, $f_{A}(x)=0$ and $f_{B}(x)=1$, therefore $\operatorname{RHS}(x)=0+1-0=1$.
(iv) $x \notin A$ and $x \notin B$. Then $L H S(x)=f_{A \cap B}(x)=0$, as $x \notin A \bigcup B$. Also, $f_{A}(x)=0$ and $f_{B}(x)=0$, therefore $R H S(x)=0+0-0=0$.
The property is therefore true for all x in U.

Exercise 4

Let n be an integer. Show that $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
Let n be an integer. We define $L H S(n)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ and $R H S(n)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Since we consider the division of n by 2 , we consider two cases:
(i) n is even. Then there exists $k \in \mathbb{Z}$ such that $n=2 k$. Then:
$\left\lfloor\frac{n}{2}\right\rfloor=k,\left\lceil\frac{n}{2}\right\rceil=k$, therefore $\operatorname{LHS}(n)=k^{2}$.
$n^{2}=4 k^{2}$, therefore $\left\lfloor\frac{n^{2}}{4}\right\rfloor=k^{2}$, i.e. $R H S(n)=k^{2}$.
(ii) n is odd. Then there exists $k \in \mathbb{Z}$ such that $n=2 k+1$. Then:
$\frac{n}{2}=k+\frac{1}{2}$. Then, $\left\lfloor\frac{n}{2}\right\rfloor=k,\left\lceil\frac{n}{2}\right\rceil=k+1$, therefore $\operatorname{LHS}(n)=k^{2}+k$.
$n^{2}=4 k^{2}+4 k+1$, therefore $\left\lfloor\frac{n^{2}}{4}\right\rfloor=k^{2}+k$, i.e. $R H S(n)=k^{2}+k$.
The property is therefore true for all n in \mathbb{Z}.

