ECS20

Discussion 5: 2/6 to 2/13 2019

Exercise 0

Additional problems on proofs:
a) Let x and y be two integers. Show that if $2 x+5 y=14$ and $y \neq 2$, then $x \neq 2$.
b) Let x and y be two integers. Show that if $x^{2}+y^{2}$ is odd, then $x+y$ is odd

Exercise 1

Determine whether each of these functions is a bijection from R to R :
a) $f(x)=2 x+4$
b) $f(x)=x^{2}+1$
c) $f(x)=(x+1) /(x+2)$
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Exercise 2

Let $S=\{-1,0,2,4,7\}$. Find $f(S)$ if:
a) $f(x)=1$
b) $\mathrm{f}(x)=2 x+1$
c) $f(x)=\left\lceil\frac{x}{5}\right\rceil$
d) $f(x)=\left\lfloor\frac{x^{2}+1}{3}\right\rfloor$

Exercise 3

Let S be a subset of a universe U. The characteristic function f_{S} of S is the function from U to the set $\{0,1\}$ such that $f_{S}(x)=1$ if x belongs to S and $f_{S}(x)=0$ if x does not belong to S. Let A and B be two sets. Show that for all x in U,
a) $f_{A \cap B}(x)=f_{A}(x) \cdot f_{B}(x)$
b) $f_{A \cup B}(x)=f_{A}(x)+f_{B}(x)-f_{A}(x) \cdot f_{B}(x)$

Exercise 4

Let n be an integer. Show that $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rfloor=\left\lfloor\frac{n^{2}}{4}\right\rfloor$

