Exercise 0

Additional problems on proofs:

- a) Let x and y be two integers. Show that if 2x+5y=14 and $y \ne 2$, then $x \ne 2$.
- b) Let x and y be two integers. Show that if x^2+y^2 is odd, then x+y is odd

Exercise 1

Determine whether each of these functions is a bijection from R to R:

a)
$$f(x) = 2x + 4$$

b)
$$f(x) = x^2 + 1$$

c)
$$f(x) = (x+1)/(x+2)$$

d)
$$f(x)=(x^2+1)/(x^2+2)$$

Exercise 2

Let $S = \{-1,0,2,4,7\}$. Find f(S) if:

a)
$$f(x) = 1$$

b)
$$f(x) = 2x+1$$

c)
$$f(x) = \left[\frac{x}{5}\right]$$

$$d) \quad f(x) = \left\lfloor \frac{x^2 + 1}{3} \right\rfloor$$

Exercise 3

Let S be a subset of a universe U. The characteristic function f_S of S is the function from U to the set $\{0,1\}$ such that $f_S(x)=1$ if x belongs to S and $f_S(x)=0$ if x does not belong to S. Let A and B be two sets. Show that for all x in U,

a)
$$f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$$

b)
$$f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$$

Exercise 4

Let n be an integer. Show that $\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n^2}{4} \right\rfloor$