Discussion 6: Solutions

ECS 20 (Winter 2019)

Patrice Koehl koehl@cs.ucdavis.edu

Feb 13-19, 2019

Exercise 1: proofs

• a) Let x and y be two integers. Show that if 2x + 5y = 14 and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \to q$, where p and q are defined as:

p: 2x + 5y = 14 and $y \neq 2$

 $q: x \neq 2$

We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.

Hypothesis: $p \to q$ is false, which is equivalent to saying that p is true, AND q is false.

Therefore, 2x + 5y = 14 and $y \neq 2$ and x = 2. Replacing x by its value in the first equation, we get 4 + 5y = 14, namely y = 2. Therefore we have y = 2 and $y \neq 2$: we have reached a contradiction.

Therefore the hypothesis is false, which means that $p \to q$ is true.

• b) Let x and y be two integers. Show that if $x^2 + y^2$ is odd, then x + y is odd

We need to prove an implication of the form $p \to q$, where p and q are defined as:

 $p: x^2 + y^2$ is odd

q: x + y is odd

We will use an indirect proof, namely instead of showing that $p \to q$, we will show the equivalent property $\neg q \to \neg p$, where:

 $\neg q: x + y$ is even

 $\neg p: x^2 + y^2$ is even

Hypothesis: $\neg q$ is true, namely x + y is even. Since x + y is even, $(x + y)^2$ is even (result from class). Therefore there exists an integer k such that $(x + y)^2 = 2k$. We note also that:

$$(x+y)^2 = x^2 + y^2 + 2xy,$$

Therefore,

$$x^2 + y^2 = 2k - 2xy = 2(k - xy)$$

Since k - xy is an integer, we conclude that $x^2 + y^2$ is even, namely that $\neg p$ is true. We have shown that $\neg q \rightarrow \neg p$ is true; we can conclude that $p \rightarrow q$ is true.

Exercise 2: floor and ceiling

• a). Let x be a real number. Show that:

$$\left\lfloor \frac{\left\lfloor \frac{x}{2} \right\rfloor}{2} \right\rfloor = \left\lfloor \frac{x}{4} \right\rfloor$$

Let us define $k = \lfloor \frac{x}{2} \rfloor$ and $m = \lfloor \frac{x}{4} \rfloor$. By definition of floor, we have the two properties: $k \le \frac{x}{2} < k + 1$

and

 $m \le \frac{x}{4} < m + 1$

Let us multiply the second inequalities by 2:

$$2m \leq \frac{x}{2} < 2(m+1)$$

We notice that:

 $k \leq \frac{x}{2}$ and $\frac{x}{2} < 2(m+1)$; therefore k < 2(m+1).

 $k \leq \frac{x}{2}$ and $2m \leq \frac{x}{2}$. Therefore k and 2m are two integers smaller than $\frac{x}{2}$. By definition of floor, k is the largest integer smaller that $\frac{x}{2}$. Therefore $2m \leq k$.

Combining those two inequalities, we get $2m \le k < 2(m+1)$. After division by 2, $m < \frac{k}{2} < m+1$. Therefore *m* is the floor of $\frac{k}{2}$. Replacing *m* and *k* by their values, we get:

$$m = \left\lfloor \frac{x}{4} \right\rfloor = \left\lfloor \frac{k}{2} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{x}{2} \right\rfloor}{2} \right\rfloor$$

The property is therefore true.

• b). Let n be an odd integer. Show that

$$\left\lceil \frac{n^2}{4} \right\rceil = \frac{n^2 + 3}{4}$$

We use a direct proof. As n is an odd integer, there exists an integer k such that n = 2k + 1. Then $n^2 = 4k^2 + 4k + 1$. Therefore,

$$LHS = \left\lceil \frac{n^2}{4} \right\rceil = \left\lceil k^2 + k + \frac{1}{4} \right\rceil = k^2 + k + \left\lceil \frac{1}{4} \right\rceil = k^2 + k + 1$$
 and

$$RHS = \frac{n^2+3}{4} = \frac{4k^2+4k+4}{4} = k^2 + k + 1$$

Therefore LHS = RHS; the property is true.

Exercise 3

• a). Show that if a function f(x) from \mathbb{R} to \mathbb{R} is O(x), then f(x) is $O(x^2)$.

By definition of O, there exists a real number k and a constant C such that if x > k, then |f(x)| < C|x|.

Let $k_2 = \max(k, 1)$. Since $k_2 > k$, we have that for $x > k_2$,

$$\begin{split} |f(x)| &< C|x|\\ \text{Since } k_2 > 1, \text{ we have that for } x > k_2,\\ |x| &< |x^2|\\ \text{Combining those two inequalities, we get that for } x > k_2,\\ |f(x)| &< C|x^2|\\ \text{Therefore } f(x) \text{ is } O(x^2). \end{split}$$

• **b**). Show that $f(n) = n \log(n^2 + 1) + \frac{\log(n)}{n^2 + 1}$ is $O(n \log(n))$.

Notice first that f(n) can be written as the sum of two functions $g(n) = n \log(n^2 + 1)$ and $h(n) = \frac{\log(n)}{n^2 + 1}$. Let us work separately with g(n) and h(n): i) Notice that: $g(n) = n \log(n^2(1 + \frac{1}{n^2})) = 2n \log(n) + n \log(1 + \frac{1}{n^2})$ Since $\frac{1}{n^2} < 1$ for n > 1, $1 + \frac{1}{n^2} < 2$ and $n \log(1 + \frac{1}{n^2}) < n \log(2)$. Therefore $n \log(1 + \frac{1}{n^2})$ is O(n). Since $2n \log(n)$ is $O(n \log(n))$, we conclude that g(n) is $O(n \log(n))$. ii) Notice that

$$\begin{split} h(n) &= \frac{\log(n)}{n^2 + 1} < \frac{n}{n^2 + 1} < n \\ \text{Therefore } h(n) \text{ is } O(n). \end{split}$$

We found that g(n) is $O(n \log(n))$ and h(n) is O(n): f(n) = g(n) + h(n) is therefore $O(max(n \log(n), n))$, namely $O(n \log(n))$.