Discussion 6: Solutions

ECS 20 (Winter 2019)

Patrice Koehl

koehl@cs.ucdavis.edu
Feb 13-19, 2019

Exercise 1: proofs

- a) Let x and y be two integers. Show that if $2 x+5 y=14$ and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:
$p: 2 x+5 y=14$ and $y \neq 2$
$q: x \neq 2$
We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.
Hypothesis: $p \rightarrow q$ is false, which is equivalent to saying that p is true, AND q is false.
Therefore, $2 x+5 y=14$ and $y \neq 2$ and $x=2$. Replacing x by its value in the first equation, we get $4+5 y=14$, namely $y=2$. Therefore we have $y=2$ and $y \neq 2$: we have reached a contradiction.
Therefore the hypothesis is false, which means that $p \rightarrow q$ is true.

- b) Let x and y be two integers. Show that if $x^{2}+y^{2}$ is odd, then $x+y$ is odd

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:
$p: x^{2}+y^{2}$ is odd
$q: x+y$ is odd
We will use an indirect proof, namely instead of showing that $p \rightarrow q$, we will show the equivalent property $\neg q \rightarrow \neg p$, where:
$\neg q: x+y$ is even
$\neg p: x^{2}+y^{2}$ is even
Hypothesis: $\neg q$ is true, namely $x+y$ is even. Since $x+y$ is even, $(x+y)^{2}$ is even (result from class). Therefore there exists an integer k such that $(x+y)^{2}=2 k$. We note also that:
$(x+y)^{2}=x^{2}+y^{2}+2 x y$,
Therefore,
$x^{2}+y^{2}=2 k-2 x y=2(k-x y)$
Since $k-x y$ is an integer, we conclude that $x^{2}+y^{2}$ is even, namely that $\neg p$ is true.
We have shown that $\neg q \rightarrow \neg p$ is true; we can conclude that $p \rightarrow q$ is true.

Exercise 2: floor and ceiling

- a). Let x be a real number. Show that:

$$
\left\lfloor\frac{\left\lfloor\frac{x}{2}\right\rfloor}{2}\right\rfloor=\left\lfloor\frac{x}{4}\right\rfloor
$$

Let us define $k=\left\lfloor\frac{x}{2}\right\rfloor$ and $m=\left\lfloor\frac{x}{4}\right\rfloor$. By definition of floor, we have the two properties:
$k \leq \frac{x}{2}<k+1$
and
$m \leq \frac{x}{4}<m+1$
Let us multiply the second inequalities by 2 :
$2 m \leq \frac{x}{2}<2(m+1)$
We notice that:
$k \leq \frac{x}{2}$ and $\frac{x}{2}<2(m+1)$; therefore $k<2(m+1)$.
$k \leq \frac{x}{2}$ and $2 m \leq \frac{x}{2}$. Therefore k and $2 m$ are two integers smaller than $\frac{x}{2}$. By definition of floor, k is the largest integer smaller that $\frac{x}{2}$. Therefore $2 m \leq k$.
Combining those two inequalities, we get $2 m \leq k<2(m+1)$. After division by $2, m<\frac{k}{2}<$ $m+1$. Therefore m is the floor of $\frac{k}{2}$. Replacing m and k by their values, we get:

$$
m=\left\lfloor\frac{x}{4}\right\rfloor=\left\lfloor\frac{k}{2}\right\rfloor=\left\lfloor\frac{\left\lfloor\frac{x}{2}\right\rfloor}{2}\right\rfloor
$$

The property is therefore true.

- b). Let n be an odd integer. Show that

$$
\left\lceil\frac{n^{2}}{4}\right\rceil=\frac{n^{2}+3}{4}
$$

We use a direct proof. As n is an odd integer, there exists an integer k such that $n=2 k+1$. Then $n^{2}=4 k^{2}+4 k+1$. Therefore,
$L H S=\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil k^{2}+k+\frac{1}{4}\right\rceil=k^{2}+k+\left\lceil\frac{1}{4}\right\rceil=k^{2}+k+1$
and
$R H S=\frac{n^{2}+3}{4}=\frac{4 k^{2}+4 k+4}{4}=k^{2}+k+1$
Therefore $L H S=R H S$; the property is true.

Exercise 3

- a). Show that if a function $f(x)$ from \mathbb{R} to \mathbb{R} is $O(x)$, then $f(x)$ is $O\left(x^{2}\right)$.

By definition of O, there exists a real number k and a constant C such that if $x>k$, then $|f(x)|<C|x|$.
Let $k_{2}=\max (k, 1)$. Since $k_{2}>k$, we have that for $x>k_{2}$,
$|f(x)|<C|x|$
Since $k_{2}>1$, we have that for $x>k_{2}$,
$|x|<\left|x^{2}\right|$
Combining those two inequalities, we get that for $x>k_{2}$,
$|f(x)|<C\left|x^{2}\right|$
Therefore $f(x)$ is $O\left(x^{2}\right)$.

- b). Show that $f(n)=n \log \left(n^{2}+1\right)+\frac{\log (n)}{n^{2}+1}$ is $O(n \log (n))$.

Notice first that $f(n)$ can be written as the sum of two functions $g(n)=n \log \left(n^{2}+1\right)$ and $h(n)=\frac{\log (n)}{n^{2}+1}$. Let us work separately with $g(n)$ and $h(n)$:
i) Notice that:
$g(n)=n \log \left(n^{2}\left(1+\frac{1}{n^{2}}\right)\right)=2 n \log (n)+n \log \left(1+\frac{1}{n^{2}}\right)$
Since $\frac{1}{n^{2}}<1$ for $n>1,1+\frac{1}{n^{2}}<2$ and $n \log \left(1+\frac{1}{n^{2}}\right)<n \log (2)$. Therefore $n \log \left(1+\frac{1}{n^{2}}\right)$ is $O(n)$. Since $2 n \log (n)$ is $O(n \log (n))$, we conclude that $g(n)$ is $O(n \log (n))$.
ii) Notice that
$h(n)=\frac{\log (n)}{n^{2}+1}<\frac{n}{n^{2}+1}<n$
Therefore $h(n)$ is $O(n)$.
We found that $g(n)$ is $O(n \log (n))$ and $h(n)$ is $O(n): f(n)=g(n)+h(n)$ is therefore $O(\max (n \log (n), n))$, namely $O(n \log (n))$.

