Discussion 7: Solutions

ECS 20 (Winter 2019)

Patrice Koehl

koehl@cs.ucdavis.edu
February 20-26

Exercise 1

Let a, b, and c be three integers. Show that if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
We use a direct proof. Hypothesis: $a \mid b c$ and $\operatorname{gcd}(a, b)=1$
Since $\operatorname{gcd}(a, b)=1$, according to Bezout's identity, we know that there exists two integer numbers m and n such that

$$
a m+b n=1
$$

After multiplication by c :

$$
a c m+b c n=c
$$

We know that $a \mid b c$. Therefore there exists an integer k such that $b c=k a$. Replacing in the equation above, we get:

$$
\begin{aligned}
a c m+k a n & =c \\
a(c m+k n) & =c
\end{aligned}
$$

i.e. $a \mid c$.

Exercise 2

Let n be a natural number. We call $s(n)$ the sum of its digits. We want to show that if $s(3 n)=s(n)$ then $9 \mid n$.

Proof. We use a direct proof.
Let n be a natural number. Since $3 \mid 3 n$, we know that $3 \mid s(3 n)$ (this is the divisibility property: a number is divisible by 3 if and only if 3 divides the sum of its digit).

The hypothesis is that $s(3 n)=s(n)$. Therefore $3 \operatorname{mid} s(n)$, i.e. $3 \mid n$ (from the same divisibility by 3 property).

As $3 \mid n$, there exists an integer k such that $n=3 k$. Then $3 n=9 k$, i.e. $9 \mid 3 n$. Applying the divisibility by 9 property (i.e. a number is divisible by 9 if and only if 9 divides the sum of its digits), we find that $9 \mid s(3 n)$. Therefore $9 \mid s(n)$ and finally $9 \mid n$.

Exercise 3

Let a be a non-zero integer. Show that if $2 \nmid a$ and $3 \nmid a$, then $24 \mid\left(a^{2}+23\right)$.

Proof: we use a direct proof.
Let us consider the division of a by 6 : there exists q and r such that $a=6 q+r$, with $0 \leq r<6$. We note that $r \neq 0$ and $r \neq 2$ and $r \neq 4$, as otherwise we would have $2 \mid a$. Similarly, $r \neq 3$, as otherwise $3 \mid a$. There are only two cases left: $r=1$ or $r=5$. We consider the two cases separately:

1) $r=1$
$a=6 q+1$, therefore $a^{2}+23=(6 q+1)^{2}+23=36 k^{2}+12 k+24=12 k(3 k+1)+24$. As k is an integer, we consider two cases:
k is even .
There exists an integer l such that $k=2 l$. Therefore, $a^{2}+23=24 l(3 k+1)+24=$ $24(l(3 k+1)+1)$, i.e. $24 \mid\left(a^{2}+23\right)$.
k is odd .
There exists an integer l such that $k=2 l+1$. Then $3 k+1=6 l+4=2(3 l+2)$. Therefore $a^{2}+23=24 k(3 l+2)+24=24(k(3 l+2)+1)$, i.e. $24 \mid\left(a^{2}+23\right)$.

We can conclude that when $a=6 q+1,24 \mid\left(a^{2}+23\right)$.
2) $r=5$
$a=6 q+5$, therefore $a^{2}+23=(6 q+5)^{2}+23=36 k^{2}+60 k+48=12 k(3 k+5)+48$. As k is an integer, we consider two cases:
k is even.
There exists an integer l such that $k=2 l$. Therefore, $a^{2}+23=24 l(3 k+5)+48=$ $24(l(3 k+1)+2)$, i.e. $24 \mid\left(a^{2}+23\right)$.
k is odd .
There exists an integer l such that $k=2 l+1$. Then $3 k+5=6 l+8=2(3 l+4)$. Therefore $a^{2}+23=24 k(3 l+4)+48=24(k(3 l+4)+2)$, i.e. $24 \mid\left(a^{2}+23\right)$.

We can conclude that when $a=6 q+1,24 \mid\left(a^{2}+23\right)$.
The property is therefore true for all a such that $2 \nmid a$ and $3 \nmid a$.

Exercise 4

Since x, y, and z are natural numbers greater than 1 , the number $(x y z+1)$ is not divisible by either x, y or z , as xyz is a multiple of all of the three numbers, and $(\mathrm{xyz}+1) \equiv 1 \bmod x,(\mathrm{xyz}+1) \equiv 1$ $\bmod y$ and $(x y z+1) \equiv 1 \bmod z$. Thus, we have proved by constructive proof that there exists at least one number greater than x, y, and z, which is not divisible by either of the three.

