ECS20

Discussion 7: 02/20 to 02/26 2019

Exercise 1

Let a, b, and c be three integers, with a non zero. Show that if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Exercise 2

Let n be a natural number. We call $s(n)$ the sum of its digits. Show that if $s(n)=s(3 n)$, then $9 / n$. (Hint: a number n is divisible by 3 if and only if $s(n)$ is divisible by 3. Similarly, a number n is divisible by 9 if and only if $s(n)$ is divisible by 9).

Exercise 3

Let a be a non-zero integer. Show that if 2 does not divide a and 3 does not divide a, then $24 \mid\left(a^{2}+23\right)$.

Exercise 4

Prove that for every three natural numbers x, y and z strictly greater than 1 , there is some natural number larger than x, y and z that is not divisible by x, y or z.

