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Induction

Exercise a

Let P (n) be the proposition:

n∑
i=1

(−1)ii2 =
(−1)nn(n + 1)

2

We want to show that P (n) is true for all n > 0. Let us define: LHS(n) =
n∑

i=1

(−1)ii2 and

RHS(n) = (−1)nn(n+1)
2 .

• Basic step:

LHS(1) = (−1)× 12 = 1 RHS(1) =
(−1)× 1× 2

2
= 1

Therefore P (1) is true.

• Induction step: We suppose that P (k) is true, with 1 ≤ k. We want to show that P (k + 1)
is true.
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LHS(k + 1) =

k+1∑
i=1

(−1)ii2

=
k∑

i=1

(−1)ii2 + (−1)k+1(k + 1)2

= LHS(k) + (−1)k+1(k + 1)2

= RHS(k) + (−1)k+1(k + 1)2

=
(−1)kk(k + 1)

2
+ (−1)k+1(k + 1)2

=
(−1)kk(k + 1) + 2(−1)k+1(k + 1)2

2

=
(−1)k+1(k + 1)(2k + 2− k)

2

=
(−1)k+1(k + 1)(k + 2)

2

and

RHS(k + 1) =
(−1)k+1(k + 1)(k + 2)

2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 0.

Exercise b

Let P (n) be the proposition: 2n ≤ n!. Let us define LHS(n) = 2n and RHS(n) = n!. We want to
show that P (n) is true for all n ≥ 4.

• Basis step: We show that P (4) is true:

LHS(4) = 24 = 16

RHS(4) = 4! = 24

Therefore LHS(4) ≤ RHS(4) and P (4) is true.

• Inductive step: Let k be a positive integer greater or equal to 4 (k ≥ 4), and let us suppose
that P (k) is true. We want to show that P (k + 1) is true.

LHS(k + 1) = 2k+1 = 2LHS(k)

Since P(k) is true, we find:

LHS(k + 1) ≤ 2k!

2



Since k ≥ 4, 2 ≤ k + 1.
Therefore

LHS(k + 1) ≤ (k + 1)× k!

LHS(k + 1) ≤ (k + 1)!

Since RHS(k+1) = (k+1)!, we get LHS(k+1) < RHS(k+1) which validates that P (k+1)
is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 4.

Exercise c

Let P (n) be the proposition:

n∑
i=1

1

i(i + 1)
=

n

n + 1

We want to show that P (n) is true for all n > 0. Let us define: LHS(n) =

n∑
i=1

1

(i)(i + 1)
and

RHS(n) = n
n+1 .

• Basic step:

LHS(1) =
1

1× 2
=

1

2
RHS(1) =

1

2

Therefore P (1), P (2) and P (3) are true.

• Induction step: We suppose that P (k) is true, with 1 ≤ k. We want to show that P (k + 1)
is true.
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LHS(k + 1) =

k+1∑
i=1

1

i(i + 1)

=

k∑
i=1

1

i(i + 1)
+

1

(k + 1)(k + 2)

= LHS(k) +
1

(k + 1)(k + 2)

= RHS(k) +
1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

and

RHS(k + 1) =
k + 1

k + 2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Fibonacci

Exercise a

Let P (n) be the proposition: f1 + f2 + . . .+ fn = fn+2− 1. We define LHS(n) = f1 + f2 + . . .+ fn
and RHS(n) = fn+2 − 1. We want to show that P (n) is true for all n.

• Basic step:

LHS(1) = f1 = 1

RHS(1) = f3 − 1 = 2− 1 = 1

Therefore LHS(1) = RHS(1) and P (1) is true.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.

4



Then

LHS(k + 1) = f1 + f2 + . . . + fk + fk+1

= LHS(k) + fk+1

= RHS(k) + fk+1

= fk+2 − 1 + fk+1

= fk+1 + fk+2 − 1

= fk+3 − 1

and

RHS(k + 1) = fk+3 − 1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise b

Let P (n) be the proposition: f4n is divisible by 3. We define LHS(n) = f4n. We want to show
that P (n) is true for all n.

• Basic step:

LHS(1) = f4 = 3

Therefore LHS(1) is divisible by 3 and P (1) is true.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. The there
exist m such that LHS(k) = f4k = 3m. We want to show that P (k + 1) is true.
Then

LHS(k + 1) = f4k+4

= f4k+3 + f4k+2

= 2f4k+2 + f4k+1

= 2(f4k+1 + f4k) + f4k+1

= 3f4k+1 + 2f4k

= 3f4k+1 + 6m

= 3(f4k+1 + 2m)

Therefore LHS(k + 1) is divisible by 3, which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.
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Others

Exercise a

Show that 21/(4n+1 + 52n−1) for all n > 0.

Let P (n) be the proposition: (4n+1 + 52n−1) is divisible by 21. We define A(n) = 4n+1 + 52n−1.
We want to show that P (n) is true for all n.

• Basis step:

A(1) = 42 + 5 = 16 + 5 = 21

Therefore A(1) is divisible by 21 and P (1) is true.

A(2) = 43 + 53 = 64 + 125 = 189 = 9× 21

Therefore A(2) is divisible by 21 and P (2) is true.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. Then there
exist m such that A(k) = 21m, namely 4k+1 + 52k−1 = 21m. We want to show that P (k + 1)
is true.
Then

A(k + 1) = 4k+2 + 52k+1

= 4× 4k+1 + 25× 52k−1

= 4× (21m− 52k−1) + 25× 52k−1

= 21× (4m) + (25− 4)× 52k−1

= 21× (4m) + 21× 52k−1

= 21× (4m + 52k−1

Therefore A(k + 1) is divisible by 21, which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise b

Show that any postage value of n cents can be composed with a combination of 4-cent and 7-cent
stamps only, when n is greater or equal to 18.

Let P (n) be the proposition: n cents can be composed with a combination of 4-cent and 7-cent
stamps only.
We want to show that P (n) is true for all n ≥ 18.

We note first that P (n) can be rewritten as: There exits a pair of integers (a, b) such that n = 4a+7b,
with a ≥ 0 and b ≥ 0.

We use a proof by induction:
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• Basis step:
Let n = 18; we note that 18 = 4 + 2× 7; therefore P (18) is true
Let n = 19; we note that 19 = 3× 4 + 7; therefore P (19) is true

• Inductive step: Let k be a positive integer; we want to show that P (k) → P (k + 1) for all
k ≥ 18.
To prove this implication, we suppose that P (k) is true. Then there exist (a, b) ∈ Z2 such
that k = 4a + 7b, with a ≥ 0 and b ≥ 0.
We want to find a similar decomposition of k+1, namely we would like to write k+1 = 4c+7d,
with c ≥ 0 and d ≥ 0. Since k = 4a + 7b, we have,

k + 1 = 4a + 7b + 1

We note that 1 = 8− 7 = 2× 4− 7. Therefore,

k = 4a + 7b + 2× 4− 7 = 4(a + 2) + 7(b− 1)

Since a ≥ 0, a + 2 ≥ 0. However, b− 1 ≥ 0 if and only if b ≥ 1. We therefore distinguish two
cases:

b ≥ 1 .
Let us define c = a+2 and d = b−1. Both c and d are positive (or 0), and k+1 = 4c+7d.
Therefore P(k+1) is true.

b = 0 Then

k = 4a + 1

We cannot use anymore 1 = 8−7, as this would introduce a 7 with a negative coefficient.
We note however that 1 = 21− 20 = 3× 7− 5× 4. Therefore,

k = 4a + 3× 7− 5× 4 = 4(a− 5) + 3× 7

Let c = a − 5 and d = 3. Obviously, d ≥ 0. We note that since k ≥ 18, and k is in
the form 4a, the smallest possible value for a is 5... therefore c ≥ 0. We have therefore
found two positive (or 0) integers (c, d) such that k + 1 = 4c + 7d. Therefore P(k+1) is
true..

Therefore, in all cases, P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.
Note that the proof by induction shows us that a solution exists, but does not show us how to get
that solution! This is a case of a non-constructive proof.
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