Discussion 8: Solutions

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
February 26, 2019

Induction

Exercise a

Let $P(n)$ be the proposition:

$$
\sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}
$$

We want to show that $P(n)$ is true for all $n>0$. Let us define: $L H S(n)=\sum_{i=1}^{n}(-1)^{i} i^{2}$ and RHS $(n)=\frac{(-1)^{n} n(n+1)}{2}$.

- Basic step:

$$
\operatorname{LHS}(1)=(-1) \times 1^{2}=1 \quad R H S(1)=\frac{(-1) \times 1 \times 2}{2}=1
$$

Therefore $P(1)$ is true.

- Induction step: We suppose that $P(k)$ is true, with $1 \leq k$. We want to show that $P(k+1)$ is true.

$$
\begin{aligned}
L H S(k+1) & =\sum_{i=1}^{k+1}(-1)^{i} i^{2} \\
& =\sum_{i=1}^{k}(-1)^{i} i^{2}+(-1)^{k+1}(k+1)^{2} \\
& =\operatorname{LHS}(k)+(-1)^{k+1}(k+1)^{2} \\
& =\text { RHS }(k)+(-1)^{k+1}(k+1)^{2} \\
& =\frac{(-1)^{k} k(k+1)}{2}+(-1)^{k+1}(k+1)^{2} \\
& =\frac{(-1)^{k} k(k+1)+2(-1)^{k+1}(k+1)^{2}}{2} \\
& =\frac{(-1)^{k+1}(k+1)(2 k+2-k)}{2} \\
& =\frac{(-1)^{k+1}(k+1)(k+2)}{2}
\end{aligned}
$$

and

$$
R H S(k+1)=\frac{(-1)^{k+1}(k+1)(k+2)}{2}
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>0$.

Exercise b

Let $P(n)$ be the proposition: $2^{n} \leq n$!. Let us define $L H S(n)=2^{n}$ and $R H S(n)=n!$. We want to show that $P(n)$ is true for all $n \geq 4$.

- Basis step: We show that $P(4)$ is true:

$$
\begin{gathered}
L H S(4)=2^{4}=16 \\
\text { RHS }(4)=4!=24
\end{gathered}
$$

Therefore $\operatorname{LHS}(4) \leq R H S(4)$ and $P(4)$ is true.

- Inductive step: Let k be a positive integer greater or equal to $4(k \geq 4)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
\operatorname{LHS}(k+1)=2^{k+1}=2 \operatorname{LHS}(k)
$$

Since $P(k)$ is true, we find:

$$
L H S(k+1) \leq 2 k!
$$

Since $k \geq 4,2 \leq k+1$.
Therefore

$$
\begin{aligned}
& \operatorname{LHS}(k+1) \leq(k+1) \times k! \\
& \operatorname{LHS}(k+1) \leq(k+1)!
\end{aligned}
$$

Since $R H S(k+1)=(k+1)$!, we get LHS $(k+1)<R H S(k+1)$ which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 4$.

Exercise c

Let $P(n)$ be the proposition:

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

We want to show that $P(n)$ is true for all $n>0$. Let us define: $L H S(n)=\sum_{i=1}^{n} \frac{1}{(i)(i+1)}$ and $R H S(n)=\frac{n}{n+1}$.

- Basic step:

$$
\operatorname{LHS}(1)=\frac{1}{1 \times 2}=\frac{1}{2} \quad R H S(1)=\frac{1}{2}
$$

Therefore $P(1), P(2)$ and $P(3)$ are true.

- Induction step: We suppose that $P(k)$ is true, with $1 \leq k$. We want to show that $P(k+1)$ is true.

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =\sum_{i=1}^{k+1} \frac{1}{i(i+1)} \\
& =\sum_{i=1}^{k} \frac{1}{i(i+1)}+\frac{1}{(k+1)(k+2)} \\
& =L H S(k)+\frac{1}{(k+1)(k+2)} \\
& =R H S(k)+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

and

$$
R H S(k+1)=\frac{k+1}{k+2}
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Fibonacci

Exercise a

Let $P(n)$ be the proposition: $f_{1}+f_{2}+\ldots+f_{n}=f_{n+2}-1$. We define $\operatorname{LHS}(n)=f_{1}+f_{2}+\ldots+f_{n}$ and $R H S(n)=f_{n+2}-1$. We want to show that $P(n)$ is true for all n.

- Basic step:

$$
\begin{aligned}
\operatorname{LHS}(1) & =f_{1}=1 \\
\operatorname{RHS}(1) & =f_{3}-1=2-1=1
\end{aligned}
$$

Therefore $\operatorname{LHS}(1)=R H S(1)$ and $P(1)$ is true.

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{1}+f_{2}+\ldots+f_{k}+f_{k+1} \\
& =\operatorname{LHS}(k)+f_{k+1} \\
& =\operatorname{RHS}(k)+f_{k+1} \\
& =f_{k+2}-1+f_{k+1} \\
& =f_{k+1}+f_{k+2}-1 \\
& =f_{k+3}-1
\end{aligned}
$$

and

$$
R H S(k+1)=f_{k+3}-1
$$

Therefore $\operatorname{LHS}(k+1)=\operatorname{RHS}(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise b

Let $P(n)$ be the proposition: $f_{4 n}$ is divisible by 3 . We define $L H S(n)=f_{4 n}$. We want to show that $P(n)$ is true for all n.

- Basic step:

$$
\operatorname{LHS}(1)=f_{4}=3
$$

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. The there exist m such that $L H S(k)=f_{4 k}=3 m$. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{4 k+4} \\
& =f_{4 k+3}+f_{4 k+2} \\
& =2 f_{4 k+2}+f_{4 k+1} \\
& =2\left(f_{4 k+1}+f_{4 k}\right)+f_{4 k+1} \\
& =3 f_{4 k+1}+2 f_{4 k} \\
& =3 f_{4 k+1}+6 m \\
& =3\left(f_{4 k+1}+2 m\right)
\end{aligned}
$$

Therefore $\operatorname{LHS}(k+1)$ is divisible by 3 , which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Others

Exercise a

Show that $21 /\left(4^{n+1}+5^{2 n-1}\right)$ for all $n>0$.
Let $P(n)$ be the proposition: $\left(4^{n+1}+5^{2 n-1}\right)$ is divisible by 21 . We define $A(n)=4^{n+1}+5^{2 n-1}$. We want to show that $P(n)$ is true for all n.

- Basis step:

$$
A(1)=4^{2}+5=16+5=21
$$

Therefore $A(1)$ is divisible by 21 and $P(1)$ is true.

$$
A(2)=4^{3}+5^{3}=64+125=189=9 \times 21
$$

Therefore $A(2)$ is divisible by 21 and $P(2)$ is true.

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. Then there exist m such that $A(k)=21 m$, namely $4^{k+1}+5^{2 k-1}=21 m$. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
A(k+1) & =4^{k+2}+5^{2 k+1} \\
& =4 \times 4^{k+1}+25 \times 5^{2 k-1} \\
& =4 \times\left(21 m-5^{2 k-1}\right)+25 \times 5^{2 k-1} \\
& =21 \times(4 m)+(25-4) \times 5^{2 k-1} \\
& =21 \times(4 m)+21 \times 5^{2 k-1} \\
& =21 \times\left(4 m+5^{2 k-1}\right.
\end{aligned}
$$

Therefore $A(k+1)$ is divisible by 21 , which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise b

Show that any postage value of n cents can be composed with a combination of 4 -cent and 7 -cent stamps only, when n is greater or equal to 18 .

Let $P(n)$ be the proposition: n cents can be composed with a combination of 4 -cent and 7-cent stamps only.
We want to show that $P(n)$ is true for all $n \geq 18$.
We note first that $P(n)$ can be rewritten as: There exits a pair of integers (a, b) such that $n=4 a+7 b$, with $a \geq 0$ and $b \geq 0$.

We use a proof by induction:

- Basis step:

Let $n=18$; we note that $18=4+2 \times 7$; therefore $P(18)$ is true Let $n=19$; we note that $19=3 \times 4+7$; therefore $P(19)$ is true

- Inductive step: Let k be a positive integer; we want to show that $P(k) \rightarrow P(k+1)$ for all $k \geq 18$.
To prove this implication, we suppose that $P(k)$ is true. Then there exist $(a, b) \in \mathbb{Z}^{2}$ such that $k=4 a+7 b$, with $a \geq 0$ and $b \geq 0$.
We want to find a similar decomposition of $k+1$, namely we would like to write $k+1=4 c+7 d$, with $c \geq 0$ and $d \geq 0$. Since $k=4 a+7 b$, we have,

$$
k+1=4 a+7 b+1
$$

We note that $1=8-7=2 \times 4-7$. Therefore,

$$
k=4 a+7 b+2 \times 4-7=4(a+2)+7(b-1)
$$

Since $a \geq 0, a+2 \geq 0$. However, $b-1 \geq 0$ if and only if $b \geq 1$. We therefore distinguish two cases:
$b \geq 1$.
Let us define $c=a+2$ and $d=b-1$. Both c and d are positive (or 0), and $k+1=4 c+7 d$. Therefore $\mathrm{P}(\mathrm{k}+1)$ is true.
$b=0$ Then

$$
k=4 a+1
$$

We cannot use anymore $1=8-7$, as this would introduce a 7 with a negative coefficient. We note however that $1=21-20=3 \times 7-5 \times 4$. Therefore,

$$
k=4 a+3 \times 7-5 \times 4=4(a-5)+3 \times 7
$$

Let $c=a-5$ and $d=3$. Obviously, $d \geq 0$. We note that since $k \geq 18$, and k is in the form $4 a$, the smallest possible value for a is $5 \ldots$ therefore $c \geq 0$. We have therefore found two positive (or 0) integers (c, d) such that $k+1=4 c+7 d$. Therefore $\mathrm{P}(\mathrm{k}+1)$ is true..

Therefore, in all cases, $P(k+1)$ is true.
The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n. Note that the proof by induction shows us that a solution exists, but does not show us how to get that solution! This is a case of a non-constructive proof.

