
Finals : sample

Part I: Logic

Exercise 1

We want to prove: ((¬p) ∧ (¬p→ q))⇔ (¬p ∧ q)
p q a = ¬p b = ¬p→ q c = a ∧ b a ∧ q

F F T F F F
F T T T T T
T F F T F F
T T F T F F

From columns 5 and 6, we get ((¬p) ∧ (¬p→ q))⇔ (¬p ∧ q).
Using direct derivation we get

((¬p) ∧ (¬p→ q)) ⇔ (¬p) ∧ (p ∨ q)

⇔ (¬p ∧ p) ∨ (¬p ∧ q)

⇔ F ∨ (¬p ∧ q)

⇔ (¬p ∧ q)

Exercise 2

It is circular reasoning, as the statement depends on its own proposition.
The first half that “public transportation is necessary” means “public needs
public transportation”.

Part II : Proofs & Number Theory

Exercise 1

We disprove that 2n + 1 is prime, for all n ≥ 0:
For n = 3, 23 + 1 = 9, which is not prime. Hence, 2n + 1 need not be prime,
for all n ≥ 0.

Exercise 2

We want to prove that : 3
√

3 is irrational.
Suppose 3

√
3 is not rational. Thus 3

√
3 = p

q , where p and q are coprime

integers and q is non-zero.Thus, cubing both sides, we get,p3 = 3q3, which
means 3 divides p3. Based on Euclid’s first proposition (i.e. if a prime
number p divides a product ab then p divides a or p divides b), 3 divides p.
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Let p = 3k, then 27k3 = 3q3 ⇒ q3 = 9k3. This means that q3 is a multiple
of 3, and using Euclid’s first proposition again, we get that q is a multiple
of 3. Thus, p and q have a common factor, 3, and this contradicts with our
premise that they are coprime. Hence, by contradiction, we have proved
that 3

√
3 is irrational.

Exercise 3

We want to prove : If 9|10n−1 − 1, then 9|10n − 1. Since 9|10n−1 − 1, there
exists an integer k, such that, 10n−1 − 1 = 9k ⇒ 10n−1 = 9k + 1. Then,
10n − 1 can be written as,

10n − 1 = 10.10n−1 − 1 = 10.(9k + 1)− 1

= 90k + 10− 1 = 90k + 9 = 9(10k + 1)

Since 9 is a factor of 10n− 1, this proves that if 9|10n−1− 1, then 9|10n− 1.

Exercise 4

We want to prove : n2 − n + 5 is odd for all integers n.
We follow a direct proof. Let n be an integer. If n = 1, n2 − n + 5 = 5,
which is odd. Now let us suppose n > 1. Note that n2 − n = n(n − 1). n
and n − 1 are two consecutive integers: one of them is even, and therefore
n(n − 1) is even. The sum of an even number and an odd number is odd,
therefore n2 − n + 5 is odd for all integers n.

Part III : Proof by Induction

Exercise 1

We want to Prove : P (n) is true, for all n ≥ 1, where

P (n):
n∑

i=1

i2i = (n− 1)2n+1 + 2

Let us define LHS(n) =
n∑

i=1

i2i, and RHS(n) = (n− 1)2n+1 + 2.

• Basis step: We want to prove P (1) is true.
LHS(1) = 1.21 = 2,
and
RHS(1) = (1− 1).21+1 + 2 = 0 + 2 = 2.
Therefore, LHS(1) = RHS(1): P (1) is true.
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• Inductive step: Let P (k) be true for an integer k ≥ 1, which means
LHS(k) = RHS(k). To prove that P (k + 1) is true, we prove that
LHS(k + 1) = RHS(k + 1). Let us compute LHS(k + 1):

LHS(k + 1) =
k+1∑
i=1

i2i

=
k∑

i=1

i2i + (k + 1)2k+1

= (k − 1)2k+1 + 2 + (k + 1)2k+1

= 2k+1(k − 1 + k + 1) + 2

= 2k+1(2k) + 2

= 2k+2k + 2

and

RHS(k + 1) = 2(k+1)+1((k + 1)− 1) + 2

= 2k+2k + 2

Therefore LHS(k + 1) = RHS(k + 1), i.e. P (k + 1) is true.

According to the principle of mathematical induction, we can conclude that
n∑

i=1

i2i = (n− 1)2n+1 + 2 for all n ≥ 1.

Exercise 2

a1 = 1

a2 = a1 + (2 ∗ 2− 1) = 1 + 3 = 4

a3 = a2 + (2 ∗ 3− 1) = 4 + 5 = 9

a4 = a3 + (2 ∗ 4− 1) = 9 + 7 = 16

a5 = a4 + (2 ∗ 5− 1) = 16 + 9 = 25

it seems that ak = k2.
We will prove that this is true using induction.
Let us define P (n): an = n2. We want to prove P (n) is true for all n ≥ 1.
We already proved the basis case above for k = 1 and k = 2.
Inductive step: let us suppose P (k) is true for k ≥ 1. We want to prove
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P (k + 1) is true.

ak+1 = ak + 2(k + 1)− 1

= k2 + 2k + 2− 1

= k2 + 2k + 1

= (k + 1)2.

Therefore, P (k + 1) is true. According to the principle of mathematical
induction, we can conclude that P (n) is true for all n ≥ 1.

Exercise 3

Let P(m) be 34m ≡ 1(mod 10)

• Basis case: Let us prove that P (1) is true,:
34 = 81 ≡ 1(mod 10). Hence P(1) is true.

• Inductive step: Let us assume that P (n) is true. This means that
34n ≡ 1(mod 10). We want to prove P (n + 1).
Notice that 34(n+1) = 34n ∗ 34.
From the properties of congruence, we know that if a ≡ b(mod 10) and
c ≡ d(mod 10), then ac ≡ bd(mod 10). In our case 34n ≡ 1(mod 10)
(premise), and 34 ≡ 1(mod 10) (basis step), therefore 34n+4 ≡ 1(mod 10),
and therefore P (n + 1) is true.

According to the principle of mathematical induction, we can conclude that
P (n) is true for all n ≥ 1.

Exercise 4

Note that in the proof, the basis step states P(1) is true, but does not give
details!. However,

1∑
i=1

i = 1

and

(2 ∗ 1 + 1)2

8
=

32

8
=

9

8

In fact, P (1) is not true. The basis step is not true and the proof is wrong.
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Part IV : Pigeonhole Principle

Exercise 1

Two numbers have their difference divisible by 2006 if they have the same
remainder upon division by 2006. There are 2006 possible remainders for
the division by 2006: 0, 1, . . . , 2005. Let us build a set S of 2007 powers of
3: S = {30, 31, . . . , 32006}. Let the elements of S be the ”‘objects”’, and the
remainders upon division by 2006 the ”‘boxes”’. There are 2007 objects,
that are distributed into 2006 boxes: according to the pigeonhole principle,
there is (at least) one box that contains (at least) two objects. These two
”‘objects”’ are two powers of 3 that have the same remainder upon division
by 2006, and therefore their difference is divisible by 2006.

Exercise 2

Let us use the hint given to us. Let Sm = a1 + a2 + . . . + am. There are n
such numbers. Let us divide all Sm by n:
Sm = qmn + rm with 0 ≤ rm < n.
There are two cases:

• At least one of the rm is 0. Then the corresponding Sm is (are) divisible
by n. We can set k = 0 and l = m, and the sum ak+1 + . . . + al = Sm

is divisible by n.

• None of the rm are equal to 0. This means that the remainders of the
division of the n numbers Sm belongs to S = {1, . . . , n − 1}. If we
define the Sm as ”‘objects”’, and the remainders as ”‘boxes”’, there
are n objects, and n−1 boxes. According to the Pigeonhole Principle,
when the n objects are arranged in the n − 1 boxes, (at least) one
of the boxes contains (at least) two elements. Let r be this box, and
Sp and Sq be these two ”‘objects”’. Then Sp and Sq have the same
remainder upon division by n, therefore their difference is divisible by
n. Let us suppose q > p, then Sq − Sp = ap+1 + . . . + aq. We can set
k = p and l = q, and the sum ak+1 + . . . + al = Sm is divisible by n.

In all cases, we could find k and l such that ak+1 + . . .+ al = Sm is divisible
by n.

Exercise 3

a) Using the complement rule:
The number of 8-character passwords that can be formed without any
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digit = 268.
The total number of 8-character passwords is 368.
Therefore, the number of passwords with at least one digit is 368−268.

b) To find the number of passwords that contain at least one digit and one
letter, we can use the complement and find the number of passwords
that do not contain any letter or that do not contain any digit.
From a), we know that the number of passwords that do not contain
any digit is 268.
Similarly, the number of passwords that do not contain any letter is
108.
Since the sets of passwords that do not contain letters and do not
contain digits are disjoint, using the sum rule, we can say that the
number of passwrods that do not contain any letter or any digit is
268 + 108. Thus the number of passwords that contain at least one
digit or at least one letter is 368 − (268 + 108).
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