Midterm1 (sample1): Solutions

ECS 20 (Fall 2017)

Patrice Koehl

koehl@cs.ucdavis.edu

Part I

Exercise 1

Let us build the Truth table for $A=(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

p	q	$\neg p$	$\neg q$	$p \wedge q$	$p \wedge \neg q$	$\neg p \wedge q$	$\neg p \wedge \neg q$	$(p \wedge q) \vee(p \wedge \neg q)$	$(\neg p \wedge q) \vee(\neg p \wedge \neg q)$	A
T	T	F	F	T	F	F	F	T	F	T
T	F	F	T	F	T	F	F	T	F	T
F	T	T	F	F	F	T	F	F	T	T
F	F	T	T	F	F	F	T	F	T	T

From Column 11, we can conclude that A is a tautology.
Another approach is to use logical equivalences:

$$
\begin{aligned}
(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q) & \Longleftrightarrow(p \wedge(q \vee \neg q) \vee(\neg p \wedge(q \vee \neg q) \\
& \Longleftrightarrow \text { distributivity } \\
& \Longleftrightarrow \text { complement law } \\
& \Longleftrightarrow p \wedge T) \vee(\neg p \wedge T) \\
& \Longleftrightarrow \text { absorption law } \\
& \Longleftrightarrow T
\end{aligned}
$$

Exercise 2

We can use a truth table, but it is much easier to use logical equivalences:
Note that : $(\neg p) \vee(\neg q) \vee(\neg r) \Longleftrightarrow \neg(p \wedge q \wedge r)$.
Therefore:
$(p \wedge q \wedge r) \vee(\neg p) \vee(\neg q) \vee(\neg r) \Longleftrightarrow(p \wedge q \wedge r) \vee \neg(p \wedge q \wedge r) \Longleftrightarrow T$
hence the proposition is a tautology.

Exercise 3

Let us build the truth table for $B=\neg(p \rightarrow \neg q) \rightarrow \neg(p \leftrightarrow \neg q)$:

p	q	$\not q$	$(p \rightarrow \neg q)$	$\neg(p \rightarrow \neg q)$	$p \leftrightarrow \neg q$	$\neg(p \leftrightarrow \neg q)$	B
T	T	F	F	T	F	T	T
T	F	T	T	F	T	F	T
F	T	F	T	F	T	F	T
F	F	T	T	F	F	T	T

From Column 8, we can conclude that B is a tautology.

Part II

Exercise 1

Prove or disprove that if n is an odd integer, the $n^{2}+4$ is a prime number.
This proposition is probably not true, in which case we only need one counter-example to invalidate it:
Note that if $n=11, n^{2}+4=125=5 * 5 * 5$, which is not prime. The proposition is false.

Exercise 2

Show that if n is an integer such that $n^{2}+4 n+3$ is odd, then n is even.
Let p be the proposition: " $n^{2}+4 n+3$ is odd", and let q be the proposition " n is even".
We want to show that $p \rightarrow q$ is true. It is however very difficult to start from p, therefore we will use an indirect proof, i.e. we prove that the contrapositive $\neg q \rightarrow \neg p$ is true.
Therefore, we want to prove: if n is odd, then $n^{2}+4 n+3$ is even.
Let n be an odd integer. There exists an integer k such that $n=2 k+1$. Then:

$$
\begin{aligned}
n^{2}+4 n+3 & =(2 k+1)^{2}+4 *(2 k+1)+3 \\
& =4 k^{2}+4 k+1+8 k+4+3 \\
& =4 k^{2}+12 k+8 \\
& =2 *\left(2 k^{2}+6 k+4\right)
\end{aligned}
$$

Therefore $n^{2}+4 n+3$ is a multiple of 2 , i.e. it is even.

Exercise 3

Prove or disprove that $\forall n>1$, there are no 3 integers x, y and z such that $x^{n}+y^{n}=z^{n}$.
The proposition is probably false, in which case we only need to find one counterexample.
Note that for $n=2,3^{2}+4^{2}=5^{2}$, i.e. for $n=2$, we found 3 integers x, y and z such that $x^{2}+y^{2}=z^{2}$. The proposition is false.
(we could also have chosen $x=y=z=0$).

