Midterm1 (sample1): Solutions

ECS 20 (Fall 2017)

Patrice Koehl koehl@cs.ucdavis.edu

Part I

Exercise 1

Let us build the Truth table for $A = (p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

p	q	$\neg p$	$\neg q$	$p \wedge q$	$p \land \neg q$	$\neg p \land q$	$\neg p \land \neg q$	$(p \land q) \lor (p \land \neg q)$	$(\neg p \land q) \lor (\neg p \land \neg q)$	A
Т	Т	F	F	Т	F	F	F	Т	F	Т
T	F	F	Т	F	Т	F	F	Т	F	Т
F	Т	Т	F	F	F	Т	\mathbf{F}	\mathbf{F}	Т	Т
F	F	Т	Т	F	F	F	Т	\mathbf{F}	Т	Т

From Column 11, we can conclude that A is a tautology.

Another approach is to use logical equivalences:

$$\begin{array}{cccc} (p \wedge q) \vee (p \wedge \neg q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q) & \Longleftrightarrow & (p \wedge (q \vee \neg q) \vee (\neg p \wedge (q \vee \neg q) & distributivity \\ \Leftrightarrow & (p \wedge T) \vee (\neg p \wedge T) & complement \ law \\ \Leftrightarrow & p \vee \neg p & absorption \ law \\ \Leftrightarrow & T & complement \ law \\ \end{array}$$

Exercise 2

We can use a truth table, but it is much easier to use logical equivalences:

Note that : $(\neg p) \lor (\neg q) \lor (\neg r) \iff \neg (p \land q \land r).$ Therefore:

 $(p \wedge q \wedge r) \vee (\neg p) \vee (\neg q) \vee (\neg r) \Longleftrightarrow (p \wedge q \wedge r) \vee \neg (p \wedge q \wedge r) \Longleftrightarrow T$ hence the proposition is a tautology.

Exercise 3

Let us build the truth table for $B = \neg(p \rightarrow \neg q) \rightarrow \neg(p \leftrightarrow \neg q)$:

p	q	Ŕ	$(p \to \neg q)$	$\neg(p \to \neg q)$	$p \leftrightarrow \neg q$	$\neg(p\leftrightarrow\neg q)$	B
Т	Т	F	F	Т	F	Т	Т
Т	F	Т	Т	\mathbf{F}	Т	F	Т
F	Т	F	Т	\mathbf{F}	Т	F	Т
F	F	Т	Т	\mathbf{F}	F	Т	Т

From Column 8, we can conclude that B is a tautology.

Part II

Exercise 1

Prove or disprove that if n is an odd integer, the $n^2 + 4$ is a prime number.

This proposition is probably not true, in which case we only need one counter-example to invalidate it:

Note that if n = 11, $n^2 + 4 = 125 = 5 * 5 * 5$, which is not prime. The proposition is false.

Exercise 2

Show that if n is an integer such that $n^2 + 4n + 3$ is odd, then n is even.

Let p be the proposition: " $n^2 + 4n + 3$ is odd", and let q be the proposition "n is even".

We want to show that $p \to q$ is true. It is however very difficult to start from p, therefore we will use an indirect proof, i.e. we prove that the contrapositive $\neg q \to \neg p$ is true.

Therefore, we want to prove: if n is odd, then $n^2 + 4n + 3$ is even.

Let n be an odd integer. There exists an integer k such that n = 2k + 1. Then:

$$n^{2} + 4n + 3 = (2k + 1)^{2} + 4 * (2k + 1) + 3$$

= 4k² + 4k + 1 + 8k + 4 + 3
= 4k² + 12k + 8
= 2 * (2k² + 6k + 4)

Therefore $n^2 + 4n + 3$ is a multiple of 2, i.e. it is even.

Exercise 3

Prove or disprove that $\forall n > 1$, there are no 3 integers x, y and z such that $x^n + y^n = z^n$.

The proposition is probably false, in which case we only need to find one counterexample. Note that for n = 2, $3^2+4^2 = 5^2$, i.e. for n = 2, we found 3 integers x, y and z such that $x^2+y^2 = z^2$. The proposition is false.

(we could also have chosen x = y = z = 0).