Midterm Review Solutions

ECS 20

Patrice Koehl
koehl@cs.ucdavis.edu

May 4, 2016

Exercise 1

Build a truth table for the proposition $(p \leftrightarrow q) \oplus(p \leftrightarrow \neg q)$

p	q	$\neg q$	$p \leftrightarrow q$	$(p \leftrightarrow \neg q)$	$(p \leftrightarrow q) \oplus(p \leftrightarrow \neg q)$
T	T	F	T	F	T
T	F	T	F	T	T
F	T	F	F	T	T
F	F	T	T	F	T

Column 6 shows that $(p \leftrightarrow q) \oplus(p \leftrightarrow \neg q)$ is a tautology.

Exercise 2

We design different proofs of the fact that the square of an even number is an even number. Let p be the proposition " ' n is an even number"' and let q be the proposition " n n is an even number, where n is an integer.
(i) Direct proof: $p \rightarrow q$. To prove that an implication of the form $p \rightarrow q$ is true, it is sufficient to prove that if p is true, then q is true. Let us assume p is true, i.e. n is even. We know that there exists an (unique) integer k such that $n=2 k$. By substitution, we get $n^{2}=4 k^{2}=2\left(2 k^{2}\right)$. This shows that n^{2} is divisible by 2 and therefore even by definition. Hence q is true, and the implication is always true.
(ii) Indirect proof: $\neg q \rightarrow \neg p$. In an indirect proof, we attempt to prove the contrapositive of the original implication (this is a valid proof technique, as we know that an implication and its contrapositive are equivalent). We suppose $\neg q$ is true, i.e. n^{2} is odd, and we want to prove that $\neg p$ is true, i.e. n is odd. We use our knowledge from number theory! n^{2} is odd means that there exists a (unique) k such that $n^{2}=2 k+1$. Then $n^{2}-1=2 k$. By definition, this means that 2 divides $(n-1)(n+1)$. Since 2 is prime, using Euclid's first proposition, we get that $2 /(n-1)$ or $2 /(n+1)$. If $2 /(n-1)$, then there exists m such that $n-1=2 m$, hence
$n=2 m+1$ and n is odd, by definition. If $2 /(n+1)$, then there exists m such that $n+1=2 m$, hence $n=2 m-1$, and n is odd, by definition. In all cases, n is odd, which concludes the proof.
An even simpler proof: since 2 is prime, according to Fermat's little theorem, $n^{2} \equiv n(\bmod 2)$. Hence if $n^{2} \equiv 1(\bmod 2), n \equiv 1(\bmod 2)$.
(iii) Proof by contradiction. Given p true, we assume that $\neg q$ is true, and we show that we reach a contradiction. Let n be an even number, and let us assume that n^{2} is an odd number. There exists k such that $n^{2}=2 k+1$. We show then (see indirect proof above) that n is odd, which contradicts the premise (i.e. we have $p \wedge \neg p$, which is a contradiction). Hence the assumption n^{2} is odd is false, and n^{2} is even.

Exercise 3

Suppose that a is a non-zero rational number, and b is an irrational number; we want to show that the product $a b$ is irrational. We use a proof by contradiction, i.e. we suppose that $a b$ is rational, and we attempt to show that this leads to a contradiction. Let us write $a b=c$, with c rational. Since a is a non-zero rational, it has a multiplicative inverse, a^{-1} that is also rational. Then $b=c a^{-1}$. Since the product of two rational numbers is rational, this shows that b is rational which contradict the premise that b is irrational. Hence the hypothesis $a b$ is rational is false, and $a b$ is therefore irrational.

Exercise 4

Since there is an order relation on real numbers, given 2 real numbers, x and y, there can be 3 cases, $x>y, x<y$, and $x=y$ (this is sometimes referred to as the trichotomy law).
a) When $x>y, \max (x, y)=x$ and $\min (x, y)=y$. In this case, $\max (x, y)+\min (x, y)=x+y$.
b) When $x=y, \max (x, y)=\min (x, y)=x=y$. In this case, $\max (x, y)+\min (x, y)=x+x=$ $x+y$.
c) When $x<y, \max (x, y)=y$ and $\min (x, y)=x$. In this case, $\max (x, y)+\min (x, y)=y+x=$ $x+y$, by commutative property of addition of real numbers.

The method of proof by cases allows us to conclude that $\max (x, y)+\min (x, y)=x+y$ for all $(x, y) \in \mathbb{R}^{2}$.

Exercise 5

Let $\mathrm{a}=65^{1000}-8^{2001}+3^{177}, \mathrm{~b}=79^{1212}-9^{2399}+2^{2001}$ and $\mathrm{c}=24^{4493}-5^{8192}+7^{1777}$; we want to show that the product of two of these 3 numbers is non negative. In other words, we want to show that ONE of the elements of the set $\{a b, a c, b c\}$ is non negative. We develop a proof by contradiction. We suppose that ALL the elements of the set $\{a b, a c, b c\}$ are strictly negative. Let P by the product of all the elements of that set. Since there are 3 negative elements in that set, P is strictly negative. But $P=a b a c b c=a^{2} b^{2} c^{2}$, i.e. P is the product of 3 positive numbers (three squares), hence P is positive. We have shown that P is both strictly negative and positive, i.e we have reached a contradiction. The hypothesis was wrong, and we therefore validate that the product of two of the 3 numbers a, b and c is non negative.

Exercise 6

a) $x \in A \cup B \Rightarrow x \in A \vee x \in B$. Since $A \cup B \cup C$ contains all elements either in A, B or C , all the elements of $A \cup B$ are contained in $A \cup B \cup C$. Hence, proved that $A \cup B \subset A \cup B \cup C$.
b) We know that the conjunction logic operation is both associative and commutative. Checking membership of $(A-B)-C$:

$$
\begin{aligned}
((A-B)-C) & =\{x \mid x \in((A-B)-C)\} \\
& =\{x \mid x \in(A-B) \wedge \neg(x \in C)\} \\
& =\{x \mid(x \in A \wedge(\neg x \in B)) \wedge \neg(x \in C)\} \\
& =\{x \mid(\neg(x \in B) \wedge x \in A) \wedge \neg(x \in C)\} \\
& =\{x \mid \neg(x \in B) \wedge(x \in A \wedge \neg(x \in C)\} \\
& =\{x \mid \neg(x \in B) \wedge(x \in(A-C))\}
\end{aligned}
$$

Thus, all elements of $(A-B)-C$ are contained in $(A-C)$ and not contained in B, which means that all elements of $(A-B)-C$ are elements of $(A-C)$. This proves that $(A-B)-C \subset(A-C)$.
c) Let us write the definition of $(B-A) \cup(C-A)$, and use logic operations:

$$
\begin{aligned}
(B-A) \cup(C-A) & =\{x \mid x \in(B-A) \vee x \in(C-A)\} \\
& =\{x \mid(x \in B \wedge \neg(x \in A)) \vee(x \in C \wedge \neg(x \in A))\}
\end{aligned}
$$

Since \wedge is commutative, we obtain:

$$
(B-A) \cup(C-A)=\{x \mid(\neg(x \in A) \wedge x \in B) \vee(\neg(x \in A) \wedge x \in C)\}
$$

Since \wedge and \vee are associative, we obtain:

$$
\begin{aligned}
(B-A) \cup(C-A) & =\{x \mid(\neg(x \in A)) \wedge(x \in B \vee x \in C)\} \\
& =\{x \mid(\neg(x \in A) \wedge(x \in B \cup C)\} \\
& =\{x \mid x \in((B \cup C)-A)\}
\end{aligned}
$$

This completes the proof that $(B-A) \cup(C-A)=(B \cup C)-A$.

