Midterm Review Solutions

$ECS \ 20$

Patrice Koehl koehl@cs.ucdavis.edu

May 4, 2016

Exercise 1

Build a truth table for the proposition $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$

p	q	$\neg q$	$p \leftrightarrow q$	$(p\leftrightarrow \neg q)$	$(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
Т	Т	F	Т	F	Т
Т	\mathbf{F}	Т	F	Т	Т
\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т	Т
F	F	Т	Т	F	Т

Column 6 shows that $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$ is a tautology.

Exercise 2

We design different proofs of the fact that the square of an even number is an even number. Let p be the proposition "'n is an even number" and let q be the proposition "' n^2 is an even number, where n is an integer.

- (i) Direct proof: p → q. To prove that an implication of the form p → q is true, it is sufficient to prove that if p is true, then q is true. Let us assume p is true, i.e. n is even. We know that there exists an (unique) integer k such that n = 2k. By substitution, we get n² = 4k² = 2(2k²). This shows that n² is divisible by 2 and therefore even by definition. Hence q is true, and the implication is always true.
- (ii) Indirect proof: $\neg q \rightarrow \neg p$. In an indirect proof, we attempt to prove the contrapositive of the original implication (this is a valid proof technique, as we know that an implication and its contrapositive are equivalent). We suppose $\neg q$ is true, i.e. n^2 is odd, and we want to prove that $\neg p$ is true, i.e. n is odd. We use our knowledge from number theory! n^2 is odd means that there exists a (unique) k such that $n^2 = 2k + 1$. Then $n^2 1 = 2k$. By definition, this means that 2 divides (n-1)(n+1). Since 2 is prime, using Euclid's first proposition, we get that 2/(n-1) or 2/(n+1). If 2/(n-1), then there exists m such that n-1 = 2m, hence

n = 2m + 1 and n is odd, by definition. If 2/(n+1), then there exists m such that n+1 = 2m, hence n = 2m - 1, and n is odd, by definition. In all cases, n is odd, which concludes the proof.

An even simpler proof: since 2 is prime, according to Fermat's little theorem, $n^2 \equiv n(mod2)$. Hence if $n^2 \equiv 1(mod2)$, $n \equiv 1(mod2)$.

(iii) **Proof by contradiction**. Given p true, we assume that $\neg q$ is true, and we show that we reach a contradiction. Let n be an even number, and let us assume that n^2 is an odd number. There exists k such that $n^2 = 2k + 1$. We show then (see indirect proof above) that n is odd, which contradicts the premise (i.e. we have $p \land \neg p$, which is a contradiction). Hence the assumption n^2 is odd is false, and n^2 is even.

Exercise 3

Suppose that a is a non-zero rational number, and b is an irrational number; we want to show that the product ab is irrational. We use a proof by contradiction, i.e. we suppose that ab is rational, and we attempt to show that this leads to a contradiction. Let us write ab = c, with c rational. Since a is a non-zero rational, it has a multiplicative inverse, a^{-1} that is also rational. Then $b = ca^{-1}$. Since the product of two rational numbers is rational, this shows that b is rational which contradict the premise that b is irrational. Hence the hypothesis ab is rational is false, and ab is therefore irrational.

Exercise 4

Since there is an order relation on real numbers, given 2 real numbers, x and y, there can be 3 cases, x > y, x < y, and x = y (this is sometimes referred to as the trichotomy law).

- a) When x > y, max(x, y) = x and min(x, y) = y. In this case, max(x, y) + min(x, y) = x + y.
- b) When x = y, max(x, y) = min(x, y) = x = y. In this case, max(x, y) + min(x, y) = x + x = x + y.
- c) When x < y, max(x, y) = y and min(x, y) = x. In this case, max(x, y) + min(x, y) = y + x = x + y, by commutative property of addition of real numbers.

The method of proof by cases allows us to conclude that max(x,y) + min(x,y) = x + y for all $(x,y) \in \mathbb{R}^2$.

Exercise 5

Let $a = 65^{1000} - 8^{2001} + 3^{177}$, $b = 79^{1212} - 9^{2399} + 2^{2001}$ and $c = 24^{4493} - 5^{8192} + 7^{1777}$; we want to show that the product of two of these 3 numbers is non negative. In other words, we want to show that **ONE** of the elements of the set $\{ab, ac, bc\}$ is non negative. We develop a proof by contradiction. We suppose that **ALL** the elements of the set $\{ab, ac, bc\}$ are strictly negative. Let P by the product of all the elements of that set. Since there are 3 negative elements in that set, Pis strictly negative. But $P = abacbc = a^2b^2c^2$, i.e. P is the product of 3 positive numbers (three squares), hence P is positive. We have shown that P is both strictly negative and positive, i.e we have reached a contradiction. The hypothesis was wrong, and we therefore validate that the product of two of the 3 numbers a, b and c is non negative.

Exercise 6

- a) $x \in A \cup B \Rightarrow x \in A \lor x \in B$. Since $A \cup B \cup C$ contains all elements either in A, B or C, all the elements of $A \cup B$ are contained in $A \cup B \cup C$. Hence, proved that $A \cup B \subset A \cup B \cup C$.
- b) We know that the conjunction logic operation is both associative and commutative. Checking membership of (A B) C:

Thus, all elements of (A-B)-C are contained in (A-C) and not contained in B, which means that all elements of (A-B)-C are elements of (A-C). This proves that $(A-B)-C \subset (A-C)$.

c) Let us write the definition of $(B - A) \cup (C - A)$, and use logic operations:

$$(B-A) \cup (C-A) = \{x \mid x \in (B-A) \lor x \in (C-A)\}$$

=
$$\{x \mid (x \in B \land \neg (x \in A)) \lor (x \in C \land \neg (x \in A))\}$$

Since \wedge is commutative, we obtain:

$$(B-A) \cup (C-A) = \{x \mid (\neg(x \in A) \land x \in B) \lor (\neg(x \in A) \land x \in C)\}$$

Since \wedge and \vee are associative, we obtain:

$$(B - A) \cup (C - A) = \{x \mid (\neg(x \in A)) \land (x \in B \lor x \in C)\} \\ = \{x \mid (\neg(x \in A) \land (x \in B \cup C)\} \\ = \{x \mid x \in ((B \cup C) - A)\}\$$

This completes the proof that $(B - A) \cup (C - A) = (B \cup C) - A$.