Midterm 2: Solutions

ECS20 (Fall 2016)

November, 2016

Part I: Sets

Let A and B be two sets in a domain D. Show that $\overline{(A \bigcap \bar{B}) \bigcup(B \bigcap \bar{A})}=(\bar{A} \bigcap \bar{B}) \bigcup(B \bigcap A)$.
We can use a proof by membership table. I ill use the set identities. Let $L H S=\overline{(A \bigcap \bar{B}) \bigcup(B \bigcap \bar{A})}$ and $R H S=(\bar{A} \bigcap \bar{B}) \bigcup(B \bigcap A)$.

Then:

$$
\begin{aligned}
L H S & =\overline{(A \bigcap \bar{B})} \widehat{(B \bigcap \bar{A})} \\
& =(\bar{A} \bigcup B) \bigcap(\bar{B} \bigcup A) \\
& =[(\bar{A} \bigcup B) \bigcap \bar{B}] \bigcup[(\bar{A} \bigcup B) \bigcap A] \\
& =[\bar{B} \bigcap(\bar{A} \bigcup B)] \bigcup[A \bigcap(\bar{A} \bigcup B)] \\
& =[(\bar{B} \bigcap \bar{A}) \bigcup(B \bigcap \bar{B})] \bigcup[(A \bigcap \bar{A}) \bigcup(A \bigcap B)] \\
& =[(\bar{B} \bigcap \bar{A}) \bigcup \emptyset] \bigcup[\emptyset \bigcup(A \bigcap B)] \\
& =(\bar{B} \bigcap \bar{A}) \bigcup(A \bigcap B) \\
& =R H S
\end{aligned}
$$

Therefore the two sets $L H R$ and $R H S$ are equal!

Part II: functions

1) Let x be a real number. Solve $\lfloor 3 x-2\rfloor=x$.

We notice first that since floor is a function from \mathbb{R} to \mathbb{Z}, x has to be an integer. Since x is an integer, $3 x-2$ is an integer. Therefore the equation becomes $3 x-2=x$; this leads to $x=1$.
2) Let x be a real number. Show that $\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x+1}{2}\right\rfloor=\lfloor x\rfloor$

Let $\lfloor x\rfloor=n$, where n is an integer. By definition of floor, we have:
$n \leq x<n+1$.
We consider two cases:

1) n is even: there exists an integer k such that $n=2 k$. We can rewrite the inequality above as:

$$
2 k \leq x<2 k+1
$$

Then

$$
k \leq \frac{x}{2}<k+\frac{1}{2}<k+1
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x}{2}\right\rfloor=k . \tag{1}
\end{equation*}
$$

Similarly,

$$
2 k+1 \leq x+1<2 k+2
$$

Then

$$
k<k+\frac{1}{2} \leq \frac{x+1}{2}<k+1
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+1}{2}\right\rfloor=k \tag{2}
\end{equation*}
$$

Combining equations (1) and (2), we get $\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x+1}{2}\right\rfloor=2 k=n=\lfloor x\rfloor$

1) n is odd: there exists an integer k such that $n=2 k+1$. We can rewrite the inequality above as:

$$
2 k+1 \leq x<2 k+2
$$

Then

$$
k<k+\frac{1}{2}<\frac{x}{2}<k+1
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x}{2}\right\rfloor=k . \tag{3}
\end{equation*}
$$

Similarly,

$$
2 k+2 \leq x+1<2 k+3
$$

Then

$$
k+1 \leq \frac{x+1}{2}<k+\frac{3}{2}<k+2
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+1}{2}\right\rfloor=k+1 \tag{4}
\end{equation*}
$$

Combining equations (3) and (4), we get $\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x+1}{2}\right\rfloor=k+k+1=n=\lfloor x\rfloor$

Part III: Number theory

1) Let a, b, and c be three natural numbers. Show that if $b / a, c / a$ and $\operatorname{gcd}(b, c)=1$, then $(b c) / a$.

We do a direct proof. Our hypothesis is that $b / a, c / a$ and $\operatorname{gcd}(b, c)=1$. From the last property, based on Bezout's identity, we know that there exits two integer numbers k and l such that:

$$
k b+l c=1
$$

After mulitplication by a,

$$
k b a+l c a=a
$$

We know that b / a. There exists an integer n such that $a=b n$. Similarly, we know that c / a. Therefore, there exists an integer m such that $a=c m$. Replacing in the equation above, we get:

$$
k b c m+l c b n=a
$$

After factorizing $b c$, we get:

$$
b c(k m+l n)=a
$$

Therefore ($b c$)/a.
2) Show that there are no integer solutions to the equation $x^{2}-3 y^{2}=-1$.

We do a proof by contradiction. Let us suppose that there exists a pair of integers (x_{0}, y_{0}) such that $x_{0}^{2}-3 y_{0}^{2}=-1$. Let us define LHS $=x_{0}^{2}-3 y_{0}^{2}$ and $R H S=-1$. We take those two numbers modulo 3 :
$R H S \equiv-1 \quad[3]$ therefore $R H S \equiv 2 \quad[3]$.
$L H S \equiv x_{0}^{2} \quad[3]$ since $3 y_{0}^{2}$ is a multiple of 3 . Let us consider the division of x_{0} by 3 :
There exists an integer k and an integer r such that $x_{0}=3 k+r$, with $r \in 0,1,2$. Then:

$$
x_{0}^{2}=9 k^{2}+6 k+r^{2}
$$

Therefore $x_{0}^{2} \equiv r^{2} \quad$ [3]. Since $r \in 0,1,2, r^{2} \in 0,1,4$. This means that the remainder of the division of x_{0}^{2} by 3 is either 0 or 1 , and therefore $L H S \equiv 0 \quad[3]$ or LHS $\equiv 1 \quad[3]$. This however contradicts that LHS $=$ RHS .
As we have reached a contradiction, there are no integer solutions to the equation $x^{2}-3 y^{2}=$ -1 .
3) Show that 13 divides $3^{126}+5^{126}$.

Let us define $A=3^{126}$ and $B=5^{126}$.
We notice first that 13 is a prime number. We have $126=13 \times 9+9$. Therefore:

$$
A=\left(3^{9}\right)^{1} 3 \times 3^{9}
$$

Applying Fermat's little theorem, we get:

$$
\begin{align*}
A & \equiv 3^{9} \times 3^{9} \quad[13] \tag{13}\\
& \equiv 3^{18} \quad[13] \\
& \equiv 3^{13} \times 3^{5} \quad[13 \tag{13}\\
& \equiv 3^{6}[\quad 13]
\end{align*}
$$

Notice that $3^{3} \equiv 1 \quad[13]$. We have $3^{6} \equiv 1 \quad[13]$ and therefore $A \equiv 1 \quad[13]$.
Similarly,

$$
B=\left(5^{9}\right)^{1} 3 \times 5^{9}
$$

Applying Fermat's little theorem, we get:

$$
\begin{align*}
B & \equiv 5^{9} \times 5^{9} \tag{13}\\
& \equiv 5^{18} \quad[13] \\
& \equiv 5^{13} \times 5^{5} \tag{13}\\
& \equiv 5^{6} \quad[13]
\end{align*}
$$

Notice that $5^{2} \equiv-1 \quad[13]$. We have $5^{4} \equiv 1 \quad[13]$ and therefore $B \equiv-1 \quad[13]$, i.e. $B \equiv$ 12 [13].
Then, $A+B \equiv 1+12 \quad[13]$, and therefore $A+B \equiv 0 \quad[13]$, i.e. 13 divides $3^{126}+5^{126}$.

Extra credit

Let x be a real number. Find all positive (non-zero) solutions of $x\lfloor x\rfloor=x^{2}-\lfloor x\rfloor^{2}$.
Let $\lfloor x\rfloor=n$, where n is an integer, and let $x=n+\epsilon$, where ϵ is a real number with $0 \leq \epsilon<1$. Replacing in the equation, we get:

$$
\begin{aligned}
(n+\epsilon) n & =(n+\epsilon)^{2}-n^{2} \\
& =2 \epsilon n+\epsilon^{2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
n^{2}-\epsilon n=\epsilon^{2} \tag{5}
\end{equation*}
$$

Since $\epsilon<1$ and n is positive (since we are looking for x is positive), $n \epsilon<n$, therefore $-n \epsilon>-n$ and $n^{2}-n \epsilon>n^{2}-n$. When $n \geq 2, n^{2}-n \geq 2$, and therefore $n^{2}-n \epsilon>2$. Since $n^{2}-\epsilon n=\epsilon^{2}$, this would lead to $\epsilon^{2}>2$, which is not possible since $\epsilon<1$.

Therefore $n \leq 1$, and since x is positive, $n=0$ or $n=1$.
If $n=0$, the equation become $0=x$, but we are only looking at the non-zero solutions. Therefore $n=1$.

Replacing in Equation (5), we get:

$$
\epsilon^{2}+\epsilon-1=0
$$

This equation has two solutions:

$$
\begin{aligned}
& \epsilon_{1}=\frac{-1+\sqrt{5}}{2} \\
& \epsilon_{2}=\frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

Only one of these two solutions is positive, ϵ_{1}. Therefore, there is only one non-zero positive solution to the equation,

$$
x=n+\epsilon_{1}=1+\frac{-1+\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}
$$

