
Midterm 2: Solutions
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November, 2016

Part I: Sets

Let A and B be two sets in a domain D. Show that (A
⋂
B)

⋃
(B

⋂
A) = (A

⋂
B)

⋃
(B

⋂
A).

We can use a proof by membership table. I ill use the set identities. Let LHS = (A
⋂
B)

⋃
(B

⋂
A)

and RHS = (A
⋂
B)

⋃
(B

⋂
A).

Then:

LHS = (A
⋂
B)

⋂
(B

⋂
A)

= (A
⋃
B)

⋂
(B

⋃
A)

=
[
(A

⋃
B)

⋂
B
]⋃[

(A
⋃
B)

⋂
A
]

=
[
B
⋂

(A
⋃
B)

]⋃[
A
⋂

(A
⋃
B)

]
=

[
(B

⋂
A)

⋃
(B

⋂
B)

]⋃[
(A

⋂
A)

⋃
(A

⋂
B)

]
=

[
(B

⋂
A)

⋃
∅
]⋃[

∅
⋃

(A
⋂
B)

]
= (B

⋂
A)

⋃
(A

⋂
B)

= RHS

Therefore the two sets LHR and RHS are equal!

Part II: functions

1) Let x be a real number. Solve b3x− 2c = x.

We notice first that since floor is a function from R to Z, x has to be an integer. Since x is an
integer, 3x− 2 is an integer. Therefore the equation becomes 3x− 2 = x; this leads to x = 1.

2) Let x be a real number. Show that bx2 c+ bx+1
2 c = bxc

Let bxc = n, where n is an integer. By definition of floor, we have:

n ≤ x < n+ 1.

We consider two cases:

1) n is even: there exists an integer k such that n = 2k. We can rewrite the inequality
above as:

2k ≤ x < 2k + 1

Then

k ≤ x

2
< k +

1

2
< k + 1
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Therefore

bx
2
c = k. (1)

Similarly,

2k + 1 ≤ x+ 1 < 2k + 2

Then

k < k +
1

2
≤ x+ 1

2
< k + 1

Therefore

bx+ 1

2
c = k (2)

Combining equations (1) and (2), we get bx2 c+ bx+1
2 c = 2k = n = bxc

1) n is odd: there exists an integer k such that n = 2k+ 1. We can rewrite the inequality
above as:

2k + 1 ≤ x < 2k + 2

Then

k < k +
1

2
<
x

2
< k + 1

Therefore

bx
2
c = k. (3)

Similarly,

2k + 2 ≤ x+ 1 < 2k + 3

Then

k + 1 ≤ x+ 1

2
< k +

3

2
< k + 2

Therefore

bx+ 1

2
c = k + 1 (4)

Combining equations (3) and (4), we get bx2 c+ bx+1
2 c = k + k + 1 = n = bxc
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Part III: Number theory

1) Let a, b, and c be three natural numbers. Show that if b/a, c/a and gcd(b, c) = 1, then (bc)/a.

We do a direct proof. Our hypothesis is that b/a, c/a and gcd(b, c) = 1. From the last
property, based on Bezout’s identity, we know that there exits two integer numbers k and l
such that:

kb+ lc = 1

After mulitplication by a,

kba+ lca = a

We know that b/a. There exists an integer n such that a = bn. Similarly, we know that c/a.
Therefore, there exists an integer m such that a = cm. Replacing in the equation above, we
get:

kbcm+ lcbn = a

After factorizing bc, we get:

bc(km+ ln) = a

Therefore (bc)/a.

2) Show that there are no integer solutions to the equation x2 − 3y2 = −1.

We do a proof by contradiction. Let us suppose that there exists a pair of integers (x0, y0)
such that x20 − 3y20 = −1. Let us define LHS = x20 − 3y20 and RHS = −1. We take those two
numbers modulo 3:

RHS ≡ −1 [3] therefore RHS ≡ 2 [3].

LHS ≡ x20 [3] since 3y20 is a multiple of 3. Let us consider the division of x0 by 3:

There exists an integer k and an integer r such that x0 = 3k + r, with r ∈ 0, 1, 2. Then:

x20 = 9k2 + 6k + r2

Therefore x20 ≡ r2 [3]. Since r ∈ 0, 1, 2, r2 ∈ 0, 1, 4. This means that the remainder of the
division of x20 by 3 is either 0 or 1, and therefore LHS ≡ 0 [3] or LHS ≡ 1 [3]. This
however contradicts that LHS = RHS.

As we have reached a contradiction, there are no integer solutions to the equation x2− 3y2 =
−1.

3) Show that 13 divides 3126 + 5126.

Let us define A = 3126 and B = 5126.

We notice first that 13 is a prime number. We have 126 = 13× 9 + 9. Therefore:

A = (39)13× 39

3



Applying Fermat’s little theorem, we get:

A ≡ 39 × 39 [13]

≡ 318 [13]

≡ 313 × 35 [13]

≡ 36[ 13]

Notice that 33 ≡ 1 [13]. We have 36 ≡ 1 [13] and therefore A ≡ 1 [13].

Similarly,

B = (59)13× 59

Applying Fermat’s little theorem, we get:

B ≡ 59 × 59 [13]

≡ 518 [13]

≡ 513 × 55 [13]

≡ 56 [13]

Notice that 52 ≡ −1 [13]. We have 54 ≡ 1 [13] and therefore B ≡ −1 [13], i.e. B ≡
12 [13].

Then, A+B ≡ 1 + 12 [13], and therefore A+B ≡ 0 [13], i.e. 13 divides 3126 + 5126.

Extra credit

Let x be a real number. Find all positive (non-zero) solutions of xbxc = x2 − bxc2.
Let bxc = n, where n is an integer, and let x = n+ ε, where ε is a real number with 0 ≤ ε < 1.

Replacing in the equation, we get:

(n+ ε)n = (n+ ε)2 − n2

= 2εn+ ε2

Therefore

n2 − εn = ε2 (5)

Since ε < 1 and n is positive (since we are looking for x is positive), nε < n, therefore −nε > −n
and n2−nε > n2−n. When n ≥ 2, n2−n ≥ 2, and therefore n2−nε > 2. Since n2− εn = ε2, this
would lead to ε2 > 2, which is not possible since ε < 1.

Therefore n ≤ 1, and since x is positive, n = 0 or n = 1.
If n = 0, the equation become 0 = x, but we are only looking at the non-zero solutions.

Therefore n = 1.
Replacing in Equation (5), we get:

ε2 + ε− 1 = 0
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This equation has two solutions:

ε1 =
−1 +

√
5

2

ε2 =
−1−

√
5

2

Only one of these two solutions is positive, ε1. Therefore, there is only one non-zero positive solution
to the equation,

x = n+ ε1 = 1 +
−1 +

√
5

2
=

1 +
√

5

2
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