Name:_______
ID:_____

ECS 20: Discrete Mathematics Midterm May 18, 2016

Notes:

- 1) You have 50 minutes, no more....
- 2) You can answer directly on these sheets (preferred), or on loose paper.
- 3) Please write your name at the top right of at least the first page!
- 4) There are 4 parts with a total possible number of points of 70, and one extra credit problem worth 5 points.

Part I: logic (1 question, 10 points; total 10 points)

1) A very special island is inhabited only by Knights and Knaves. Knights always tell the truth, while Knaves always lie. You meet two inhabitants: Sally and Claire. You know that one of them is the Queen of the island. Sally says, "Claire is the Queen and she is a Knave". Claire says, "Sally is not the Queen and she is a Knight'. Can you find out if Sally is a Knight or Knave? Can you find out if Claire is a Knight or Knave? Can you tell me who is the Queen? Explain your answer.

Name:______
ID:_____

Part II: proofs and number theory (4 questions, each 10 points; total 40 points)

1) Give a direct proof, an indirect proof and a proof by contradiction of the proposition: if $n^{3}+1$ is odd, then *n* is even, where *n* is a natural number.

2) Show that for all natural numbers n > 1, $n^3 + 3n^2 + 2n$ is divisible by 2 and 3. (*Hint: one* possibility is to use Fermat's little theorem)

3) Show that the sum of any three consecutive perfect cubes is divisible by 9 (*Note*: a perfect cube is a number that can be written in the form n^3 where n is an integer. The three numbers $(n-1)^3$, n^3 and $(n+1)^3$ are three consecutive perfect cubes. *Hint*: Start by showing that $n^3 + 2n$ is a multiple of 3 (or equivalently that $n^3 + 2n \equiv 0$ [3]) for all integers n.

4) Evaluate the remainder of the division of 2^{473} by 13.

Part III : Set Theory and Functions (2 questions, each 10 points; total 20 points)

1) Let A and B be two sets in a domain D. Show that $(\overline{A} \cap B) \cup (\overline{A} \cap \overline{B}) \cup (A \cap B) = \overline{A} \cup B$

2) Let *a* and *b* be two strictly positive real numbers integers and let *x* be a real number.

Show that
$$\left| \frac{\left| \frac{x}{a} \right|}{b} \right| = \left| \frac{x}{ab} \right|$$

Name:		
ID:	 	

Extra Credit (1 question; total 5 points)

Let x be a positive real number. Solve $\lfloor x \lfloor x \rfloor \rfloor = 5$.