
Midterm 2: Solutions

ECS20 (Winter 2019)

February, 2019

Part I: Proofs

Let a and b be two real numbers with a 6= 0 and b 6= 0. Use a proof by contradiction to show that if
ab > 0, then a

b + b
a ≥ 2.

Let:
p: ab > 0
q: a

b + b
a ≥ 2

and let A be the proposition p→ q. We want to show that ∀n ∈ N, A is true. We use a proof
by contradiction, i.e. we suppose that what we want to show is false, namely that ∃n ∈ N, A is not
true, i.e. ∃n ∈ N, p is true AND q is false.

p is true: ab > 0. Similarly, as q is false, a
b + b

a < 2. As ab > 0, we can multiply this inequality
by ab without changing its sense; we get:

a2 + b2 < 2ab

which gives

a2 + b2 − 2ab < 0

i.e.

(a− b)2 < 0

However, (a − b)2 is a square, and therefore (a − b)2 ≥ 0. we have reached a contradiction. The
proposition A is therefore true.

Part II: Sets

Let A, B, and C be three sets in a domain D. Consider the following possible equalities, (A
⋂

B)−
C = (A− C)

⋂
(B − C) and C − (A

⋂
B) = (C − A)

⋂
(C − B). Show that one of these equalities

is always true, but the other can be false (for the latter, give an example).
We check the first proposition. We can use a proof by membership table. I will use the set

identities. Let LHS = A
⋂
B − C and RHS = (A− C)

⋂
(B − C).

Then:

LHS = (A
⋂

B)
⋂

C

= A
⋂

B
⋂

C
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and

RHS = (A− C)
⋂

(B − C)

= A
⋂

C
⋂

B
⋂

C

= A
⋂

B
⋂

C

= LHS

Therefore the two sets LHS and RHS are equal.
The second proposition can therefore be false. Let us build the membership table for LHS =

C −A
⋂

B and RHS = (C −A)
⋂

(C −B).

A B C A
⋂

B LHS C −A C −B RHS

1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0

Notice that the membership values for LHS and RHS do not match: see the two rows with
the red values. This happens when there is a value in C and A, but not in B, or a value in C and
B, but not in A. This allows us to construct a counter example. Let for example A = {1, 2, 3},
B = {3, 4, 5}, and C = {1, 5, 7}. Then:

LHS = C − (A
⋂

B)

= {1, 5, 7} − {3}
= {1, 5, 7}

and

LHS = (C −A)
⋂

(C −B)

= {5, 7}
⋂
{1, 7}

= {7}

In this case, LHS 6= RHS.

2. Let A, B, and C be three sets in a domain D; we assume that A− C ⊂ B. x is an element
of D. Show that if x ∈ A−B, then x ∈ C .

We need to prove an implication of the form p→ q, where:

2



p : x ∈ A−B
q : x ∈ C.

We will use a proof by contradiction.

Hypothesis: p→ q is false, i.e. p is true and ¬q is true, namely x ∈ A−B, and x /∈ C. We also
know that A− C ⊂ B.
Let x be an element of D with x ∈ A−B. By definition of the difference between two sets, x ∈ A,
and x /∈ B. Since x ∈ A and x /∈ C, x ∈ A − C. As A − C ⊂ B, we have x ∈ B. This leads to
x /∈ B and x ∈ B, which is a contradiction.
Therefore, the hypothesis that p→ q is false, is false, and p→ q is true. This concludes the proof.

Part III: functions

1) Let n and m be two integers. Solve bn+m
2 c+ bn−m+1

2 c = n.

Let n and m be two integers. Let us define LHS = bn+m
2 c + bn−m+1

2 c. Notice that as we
consider division by 2, we will consider parity, and use a proof by case. We consider the parity
of n + m:

a) n + m is even. There exists an integer k such that n + m = 2k. We note also the
n−m = n + m− 2m = 2k − 2m. Then

LHS = bn + m

2
c+ bn−m + 1

2
c

= b2k
2
c+ b2k − 2m + 1

2
c

= bkc+ bk −m +
1

2
c

= k + k −m + b1
2
c

= 2k −m

= n + m−m

= n

b) n + m is odd. There exists an integer k such that n + m = 2k + 1. We note also the
n−m = n + m− 2m = 2k + 1− 2m. Then

LHS = bn + m

2
c+ bn−m + 1

2
c

= b2k + 1

2
c+ b2k − 2m + 2

2
c

= bk +
1

2
c+ bk −m + 1c

= k + k −m + 1c
= 2k + 1−m

= n + m−m

= n

In all cases, we have LHS = n.
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2) Let x be a real number, and let n be a natural number. Show that
⌊
x+3
n

⌋
=
⌊
bxc+3

n

⌋
.

Let us define l =
⌊
x+3
n

⌋
and m = bxc (l and m are both integers). By definition of floor, we

have the two properties:

l ≤ x+3
n < l + 1

and

m ≤ x < m + 1

Let us multiply the first inequality by n:

nl ≤ x + 3 < n(l + 1)

Now we subtract 3 from the same inequalities:

nl − 3 ≤ x < n(l + 1)− 3

We notice that:

m ≤ x and x < n(l + 1)− 3; therefore m < n(l + 1)− 3.

m ≤ x and nl− 3 ≤ x. Therefore m and nl− 3 are two integers smaller than x. By definition
of floor, m is the largest integer smaller that x. Therefore nl − 3 ≤ m.

Combining those two inequalities, we get nl− 3 ≤ m < n(l + 1)− 3. After addition of 3, and
division by n, l ≤ m+3

n < l + 1. Therefore l is the floor of m+3
n . Replacing l and m by their

values, we get:

l =

⌊
x + 3

n

⌋
=

⌊
m + 3

n

⌋
=

⌊
bxc+ 3

n

⌋
The property is therefore true.

Part III: Proofs

Show that {p| p is prime}
⋂
{k2 − 1|k ∈ N} = 3.

Let A = {p| p is prime} and B = {k2 − 1|k ∈ Z}. Both sets are sets of integers. An element
n of A

⋂
B satisfy the two properties:

a) n is prime

b) There exists k ∈ Z such that n = k2 − 1

Notice that n = k2 − 1 = (k − 1)(k + 1). As n is prime, and k ≥ 1, we must have k − 1 = 1, i.e.
k = 2. Therefore n = 3, and A

⋂
B = {3}.

Extra credit

Let x be a real number. Solve x−1
2 = bx2 c − b

x+1
2 c.

We notice first that x−1
2 must be an integer, as it is the difference between two floors. Notice

also that x+1
2 = x−1

2 + 1 and therefore x+1
2 is also an integer. Replacing in the equation above, we

get:
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x− 1

2
+ bx + 1

2
c = bx

2
c

x− 1

2
+

x + 1

2
= bx

2
c

x = bx
2
c

Therefore x is also an integer. We consider 2 cases:

a) x is even. There exists an integer k such that x = 2k. The equation becomes:

2k = bx
2
c

= b2k
2
c

= k

This would mean that k = 0, i.e. x = 0. But then x−1
2 would not be an integer. There are

no even solutions to the equation.

b) x is odd. There exists an integer k such that x = 2k + 1. The equation becomes:

2k + 1 = bx
2
c

= b2k + 1

2
c

= k

This equation has k = −1 for solution, in which case x = −1.

Verification:

a) x−1
2 = −1

b) bx2 c − b
x+1
2 c = b−12 c − b

−1+1
2 c = −1

Therefore the only solution to the equation is x = −1.
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