Midterm 2: Solutions
ECS20 (Winter 2019)

February, 2019

Part I: Proofs

Let a and b be two real numbers with a # 0 and b # 0. Use a proof by contradiction to show that if
ab >0, then%—i—gzz

Let:

p: ab>0

QG gyt % > 2

and let A be the proposition p — ¢q. We want to show that Vn € N, A is true. We use a proof
by contradiction, i.e. we suppose that what we want to show is false, namely that dn € N, A is not
true, i.e. In € N, p is true AND gq is false.

p is true: ab > 0. Similarly, as ¢ is false, § + g < 2. As ab > 0, we can multiply this inequality
by ab without changing its sense; we get:

a® 4+ b* < 2ab
which gives
a’ 4+ b* —2ab < 0
ie.
(a—0)*<0

However, (a — b)? is a square, and therefore (a — b)?> > 0. we have reached a contradiction. The
proposition A is therefore true.

Part II: Sets

Let A, B, and C be three sets in a domain D. Consider the following possible equalities, (A B) —
C=A-C)N(B-C)and C—(ANB) =(C—-A)(C — B). Show that one of these equalities
is always true, but the other can be false (for the latter, give an example).

We check the first proposition. We can use a proof by membership table. I will use the set
identities. Let LHS = A(\B —C and RHS = (A—-C)((B - C).

Then:

LHS = (A(\B)(\C
= A(B[)C



and
RHS = (A-C)(\(B-0)
= ACcB(C
= ABC

= LHS

Therefore the two sets LHS and RH.S are equal.
The second proposition can therefore be false. Let us build the membership table for LHS =
C—ANBand RHS = (C - A)N(C - B).

A B C ANB LHS C-A C-B RHS
1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0
00 1 0 1 1 1 1
00 0 0 0 0 0 0

Notice that the membership values for LHS and RHS do not match: see the two rows with
the red values. This happens when there is a value in C' and A, but not in B, or a value in C and
B, but not in A. This allows us to construct a counter example. Let for example A = {1,2,3},
B ={3,4,5}, and C = {1,5,7}. Then:

LHS = C-(A[)B)
= {1,5,7} — {3}
= {1,5,7}

and

LHS

(C-A)(\C-B)
= {5,717
= {7}

In this case, LHS # RHS.

2. Let A, B, and C be three sets in a domain D; we assume that A — C C B. x is an element
of D. Show that if t € A— B, thenx € C .

We need to prove an implication of the form p — ¢, where:



p:xeA—B
qg:xzeC.

We will use a proof by contradiction.

Hypothesis: p — ¢ is false, i.e. p is true and —¢ is true, namely z € A— B, and = ¢ C. We also
know that A — C' C B.
Let x be an element of D with x € A — B. By definition of the difference between two sets, z € A,
and x ¢ B. Sincex € Aandx ¢ C,z € A—C. As A— C C B, we have x € B. This leads to
x ¢ B and z € B, which is a contradiction.
Therefore, the hypothesis that p — ¢ is false, is false, and p — ¢ is true. This concludes the proof.

Part III: functions

1) Let n and m be two integers. Solve L”ngj + L”_TQ’L‘HJ =n.

Let n and m be two integers. Let us define LHS = |%£™ | 4 | 2=2+1l | Notice that as we
consider division by 2, we will consider parity, and use a proof by case. We consider the parity
of n +m:

a) n + m is even. There exists an integer k such that n + m = 2k. We note also the
n—m=n+m—2m = 2k — 2m. Then

n—+m n—m+1
2 J+1 2

2k 2k —2m +1

= S+ =5

= LkJ—FLk—m—F%J

1
= k+k—m+L§J
= 2k—m

= n+m-—m

LHS = |

]
]

= n
b) n+ m is odd. There exists an integer k such that n +m = 2k + 1. We note also the
n—m=n+m—2m =2k +1—2m. Then

n—+m n—m-++1
P
2k +1 2k —2m + 2
= |

= Lk—i—%J—FLk—m—i—lJ

LHS = |

= k+k—m+1]
= 2k+1-—m

= n+m-—-m
=n

In all cases, we have LHS = n.



2) Let x be a real number, and let n be a natural number. Show that LxT%J = L%J

Let us define [ = |££3 | and m = [z] (I and m are both integers). By definition of floor, we
have the two properties:

1< <41

and

m<zr<m+1

Let us multiply the first inequality by n:
nl<zx+3<n(l+1)

Now we subtract 3 from the same inequalities:
nl—3<z<n(l+1)-3

We notice that:

m <z and x < n(l + 1) — 3; therefore m < n(l + 1) — 3.

m < x and nl —3 < x. Therefore m and nl — 3 are two integers smaller than . By definition
of floor, m is the largest integer smaller that . Therefore nl —3 < m.

Combining those two inequalities, we get nl —3 < m < n(l 4+ 1) — 3. After addition of 3, and
division by n, [ < mTJ“?’ < {4 1. Therefore [ is the floor of mTJrg Replacing I and m by their

values, we get:
K +3| |m+3| |lz]+3
N n N n N n

The property is therefore true.

Part I1II: Proofs

Show that {p| p is prime} ({k* — 1|k € N} = 3.
Let A= {p| p isprime}and B = {k%— 1|k € Z}. Both sets are sets of integers. An element
n of AN B satisfy the two properties:

a) n is prime
b) There exists k € Z such that n = k% — 1

Notice that n = k2 —1 = (k — 1)(k +1). As n is prime, and k > 1, we must have k — 1 = 1, i.e.
k = 2. Therefore n =3, and A(\ B = {3}.

Extra credit

Let x be a real number. Solve TT_I =13] - L%J

We notice first that %1 must be an integer, as it is the difference between two floors. Notice
also that xTH = %‘1 + 1 and therefore % is also an integer. Replacing in the equation above, we
get:



r—1 r+1 T

x—1+:v+1 _ LEJ
2 2 )
xr

r = L§J

Therefore z is also an integer. We consider 2 cases:

a) x is even. There exists an integer k such that x = 2k. The equation becomes:

2% = [3]

This would mean that £k = 0, i.e. x = 0. But then IT_l would not be an integer. There are
no even solutions to the equation.

b) x is odd. There exists an integer k such that x = 2k + 1. The equation becomes:

2%k +1 = L% ]
2k+1
- =5
= k
This equation has k = —1 for solution, in which case z = —1.
Verification:
-1
a) 5= =—1
b) [§] - 15 =5 - 757 =1
Therefore the only solution to the equation is x = —1.



