Midterm 2: Solutions

ECS20 (Winter 2019)

February, 2019

Part I: Proofs

Let a and b be two real numbers with $a \neq 0$ and $b \neq 0$. Use a proof by contradiction to show that if $a b>0$, then $\frac{a}{b}+\frac{b}{a} \geq 2$.

Let:
p: $a b>0$
$\mathrm{q}: \frac{a}{b}+\frac{b}{a} \geq 2$
and let A be the proposition $p \rightarrow q$. We want to show that $\forall n \in \mathbb{N}$, A is true. We use a proof by contradiction, i.e. we suppose that what we want to show is false, namely that $\exists n \in \mathbb{N}$, A is not true, i.e. $\exists n \in \mathbb{N}, p$ is true AND q is false.
p is true: $a b>0$. Similarly, as q is false, $\frac{a}{b}+\frac{b}{a}<2$. As $a b>0$, we can multiply this inequality by $a b$ without changing its sense; we get:

$$
a^{2}+b^{2}<2 a b
$$

which gives

$$
a^{2}+b^{2}-2 a b<0
$$

i.e.

$$
(a-b)^{2}<0
$$

However, $(a-b)^{2}$ is a square, and therefore $(a-b)^{2} \geq 0$. we have reached a contradiction. The proposition A is therefore true.

Part II: Sets

Let A, B, and C be three sets in a domain D. Consider the following possible equalities, $(A \cap B)-$ $C=(A-C) \bigcap(B-C)$ and $C-(A \bigcap B)=(C-A) \bigcap(C-B)$. Show that one of these equalities is always true, but the other can be false (for the latter, give an example).

We check the first proposition. We can use a proof by membership table. I will use the set identities. Let $L H S=A \bigcap B-C$ and $R H S=(A-C) \bigcap(B-C)$.

Then:

$$
\begin{aligned}
L H S & =(A \bigcap B) \bigcap \bar{C} \\
& =A \bigcap B \bigcap \bar{C}
\end{aligned}
$$

and

$$
\begin{aligned}
R H S & =(A-C) \bigcap(B-C) \\
& =A \bigcap \bar{C} \bigcap B \bigcap \bar{C} \\
& =A \bigcap B \bigcap \bar{C} \\
& =L H S
\end{aligned}
$$

Therefore the two sets $L H S$ and $R H S$ are equal.
The second proposition can therefore be false. Let us build the membership table for $L H S=$ $C-A \bigcap B$ and $R H S=(C-A) \bigcap(C-B)$.

A	B	C	$A \bigcap B$	$L H S$	$C-A$	$C-B$	$R H S$
1	1	1	1	0	0	0	0
1	1	0	1	0	0	0	0
1	0	1	0	1	0	1	0
1	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0
0	1	0	0	0	0	0	0
0	0	1	0	1	1	1	1
0	0	0	0	0	0	0	0

Notice that the membership values for $L H S$ and $R H S$ do not match: see the two rows with the red values. This happens when there is a value in C and A, but not in B, or a value in C and B, but not in A. This allows us to construct a counter example. Let for example $A=\{1,2,3\}$, $B=\{3,4,5\}$, and $C=\{1,5,7\}$. Then:

$$
\begin{aligned}
L H S & =C-(A \bigcap B) \\
& =\{1,5,7\}-\{3\} \\
& =\{1,5,7\}
\end{aligned}
$$

and

$$
\begin{aligned}
L H S & =(C-A) \bigcap(C-B) \\
& =\{5,7\} \bigcap\{1,7\} \\
& =\{7\}
\end{aligned}
$$

In this case, $L H S \neq R H S$.
2. Let A, B, and C be three sets in a domain D; we assume that $A-C \subset B . x$ is an element of D. Show that if $x \in A-B$, then $x \in C$.

We need to prove an implication of the form $p \rightarrow q$, where:
$p: x \in A-B$
$q: x \in C$.
We will use a proof by contradiction.
Hypothesis: $p \rightarrow q$ is false, i.e. p is true and $\neg q$ is true, namely $x \in A-B$, and $x \notin C$. We also know that $A-C \subset B$.
Let x be an element of D with $x \in A-B$. By definition of the difference between two sets, $x \in A$, and $x \notin B$. Since $x \in A$ and $x \notin C, x \in A-C$. As $A-C \subset B$, we have $x \in B$. This leads to $x \notin B$ and $x \in B$, which is a contradiction.
Therefore, the hypothesis that $p \rightarrow q$ is false, is false, and $p \rightarrow q$ is true. This concludes the proof.

Part III: functions

1) Let n and m be two integers. Solve $\left\lfloor\frac{n+m}{2}\right\rfloor+\left\lfloor\frac{n-m+1}{2}\right\rfloor=n$.

Let n and m be two integers. Let us define $L H S=\left\lfloor\frac{n+m}{2}\right\rfloor+\left\lfloor\frac{n-m+1}{2}\right\rfloor$. Notice that as we consider division by 2 , we will consider parity, and use a proof by case. We consider the parity of $n+m$:
a) $n+m$ is even. There exists an integer k such that $n+m=2 k$. We note also the $n-m=n+m-2 m=2 k-2 m$. Then

$$
\begin{aligned}
L H S & =\left\lfloor\frac{n+m}{2}\right\rfloor+\left\lfloor\frac{n-m+1}{2}\right\rfloor \\
& =\left\lfloor\frac{2 k}{2}\right\rfloor+\left\lfloor\frac{2 k-2 m+1}{2}\right\rfloor \\
& =\lfloor k\rfloor+\left\lfloor k-m+\frac{1}{2}\right\rfloor \\
& =k+k-m+\left\lfloor\frac{1}{2}\right\rfloor \\
& =2 k-m \\
& =n+m-m \\
& =n
\end{aligned}
$$

b) $n+m$ is odd. There exists an integer k such that $n+m=2 k+1$. We note also the $n-m=n+m-2 m=2 k+1-2 m$. Then

$$
\begin{aligned}
\text { LHS } & =\left\lfloor\frac{n+m}{2}\right\rfloor+\left\lfloor\frac{n-m+1}{2}\right\rfloor \\
& =\left\lfloor\frac{2 k+1}{2}\right\rfloor+\left\lfloor\frac{2 k-2 m+2}{2}\right\rfloor \\
& =\left\lfloor k+\frac{1}{2}\right\rfloor+\lfloor k-m+1\rfloor \\
& =k+k-m+1\rfloor \\
& =2 k+1-m \\
& =n+m-m \\
& =n
\end{aligned}
$$

In all cases, we have $L H S=n$.
2) Let x be a real number, and let n be a natural number. Show that $\left\lfloor\frac{x+3}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+3}{n}\right\rfloor$.

Let us define $l=\left\lfloor\frac{x+3}{n}\right\rfloor$ and $m=\lfloor x\rfloor$ (l and m are both integers). By definition of floor, we have the two properties:
$l \leq \frac{x+3}{n}<l+1$
and
$m \leq x<m+1$
Let us multiply the first inequality by n :
$n l \leq x+3<n(l+1)$
Now we subtract 3 from the same inequalities:
$n l-3 \leq x<n(l+1)-3$
We notice that:
$m \leq x$ and $x<n(l+1)-3$; therefore $m<n(l+1)-3$.
$m \leq x$ and $n l-3 \leq x$. Therefore m and $n l-3$ are two integers smaller than x. By definition of floor, m is the largest integer smaller that x. Therefore $n l-3 \leq m$.

Combining those two inequalities, we get $n l-3 \leq m<n(l+1)-3$. After addition of 3 , and division by $n, l \leq \frac{m+3}{n}<l+1$. Therefore l is the floor of $\frac{m+3}{n}$. Replacing l and m by their values, we get:

$$
l=\left\lfloor\frac{x+3}{n}\right\rfloor=\left\lfloor\frac{m+3}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+3}{n}\right\rfloor
$$

The property is therefore true.

Part III: Proofs

Show that $\{p \mid \quad p \quad$ is prime $\} \bigcap\left\{k^{2}-1 \mid k \in \mathbf{N}\right\}=3$.
Let $A=\{p \mid \quad p$ is prime $\}$ and $B=\left\{k^{2}-1 \mid k \in \mathbf{Z}\right\}$. Both sets are sets of integers. An element n of $A \bigcap B$ satisfy the two properties:
a) n is prime
b) There exists $k \in \mathbb{Z}$ such that $n=k^{2}-1$

Notice that $n=k^{2}-1=(k-1)(k+1)$. As n is prime, and $k \geq 1$, we must have $k-1=1$, i.e. $k=2$. Therefore $n=3$, and $A \bigcap B=\{3\}$.

Extra credit

Let x be a real number. Solve $\frac{x-1}{2}=\left\lfloor\frac{x}{2}\right\rfloor-\left\lfloor\frac{x+1}{2}\right\rfloor$.
We notice first that $\frac{x-1}{2}$ must be an integer, as it is the difference between two floors. Notice also that $\frac{x+1}{2}=\frac{x-1}{2}+1$ and therefore $\frac{x+1}{2}$ is also an integer. Replacing in the equation above, we get:

$$
\begin{aligned}
\frac{x-1}{2}+\left\lfloor\frac{x+1}{2}\right\rfloor & =\left\lfloor\frac{x}{2}\right\rfloor \\
\frac{x-1}{2}+\frac{x+1}{2} & =\left\lfloor\frac{x}{2}\right\rfloor \\
x & =\left\lfloor\frac{x}{2}\right\rfloor
\end{aligned}
$$

Therefore x is also an integer. We consider 2 cases:
a) x is even. There exists an integer k such that $x=2 k$. The equation becomes:

$$
\begin{aligned}
2 k & =\left\lfloor\frac{x}{2}\right\rfloor \\
& =\left\lfloor\frac{2 k}{2}\right\rfloor \\
& =k
\end{aligned}
$$

This would mean that $k=0$, i.e. $x=0$. But then $\frac{x-1}{2}$ would not be an integer. There are no even solutions to the equation.
b) x is odd. There exists an integer k such that $x=2 k+1$. The equation becomes:

$$
\begin{aligned}
2 k+1 & =\left\lfloor\frac{x}{2}\right\rfloor \\
& =\left\lfloor\frac{2 k+1}{2}\right\rfloor \\
& =k
\end{aligned}
$$

This equation has $k=-1$ for solution, in which case $x=-1$.
Verification:
a) $\frac{x-1}{2}=-1$
b) $\left\lfloor\frac{x}{2}\right\rfloor-\left\lfloor\frac{x+1}{2}\right\rfloor=\left\lfloor\frac{-1}{2}\right\rfloor-\left\lfloor\frac{-1+1}{2}\right\rfloor=-1$

Therefore the only solution to the equation is $x=-1$.

