Midterm 2: Solutions

ECS20 (Winter 2019)

February, 2019

Part I: Proofs

Let a and b be two real numbers with $a \neq 0$ and $b \neq 0$. Use a proof by contradiction to show that if ab > 0, then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Let:

p: ab > 0

q: $\frac{a}{b} + \frac{b}{a} \ge 2$

and let A be the proposition $p \to q$. We want to show that $\forall n \in \mathbb{N}$, A is true. We use a proof by contradiction, i.e. we suppose that what we want to show is false, namely that $\exists n \in \mathbb{N}$, A is not true, i.e. $\exists n \in \mathbb{N}$, p is true AND q is false.

p is true: ab > 0. Similarly, as q is false, $\frac{a}{b} + \frac{b}{a} < 2$. As ab > 0, we can multiply this inequality by ab without changing its sense; we get:

$$a^2 + b^2 < 2ab$$

which gives

$$a^2 + b^2 - 2ab < 0$$

i.e.

$$(a-b)^2 < 0$$

However, $(a - b)^2$ is a square, and therefore $(a - b)^2 \ge 0$. we have reached a contradiction. The proposition A is therefore true.

Part II: Sets

Let A, B, and C be three sets in a domain D. Consider the following possible equalities, $(A \cap B) - C = (A - C) \cap (B - C)$ and $C - (A \cap B) = (C - A) \cap (C - B)$. Show that one of these equalities is always true, but the other can be false (for the latter, give an example).

We check the first proposition. We can use a proof by membership table. I will use the set identities. Let $LHS = A \bigcap B - C$ and $RHS = (A - C) \bigcap (B - C)$.

Then:

$$LHS = (A \bigcap B) \bigcap \overline{C}$$
$$= A \bigcap B \bigcap \overline{C}$$

and

$$RHS = (A - C) \bigcap (B - C)$$
$$= A \bigcap \overline{C} \bigcap B \bigcap \overline{C}$$
$$= A \bigcap B \bigcap \overline{C}$$
$$= LHS$$

Therefore the two sets LHS and RHS are equal.

The second proposition can therefore be false. Let us build the membership table for $LHS = C - A \bigcap B$ and $RHS = (C - A) \bigcap (C - B)$.

A	В	C	$A \bigcap B$	LHS	C - A	C - B	RHS
-	-	-	-	0	0	0	0
1	1	T	1	0	0	0	0
1	1	0	1	0	0	0	0
1	0	1	0	1	0	1	0
1	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0
0	1	0	0	0	0	0	0
0	0	1	0	1	1	1	1
0	0	0	0	0	0	0	0

Notice that the membership values for LHS and RHS do not match: see the two rows with the red values. This happens when there is a value in C and A, but not in B, or a value in C and B, but not in A. This allows us to construct a counter example. Let for example $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, and $C = \{1, 5, 7\}$. Then:

$$LHS = C - (A \bigcap B)$$

= {1,5,7} - {3}
= {1,5,7}

and

$$LHS = (C - A) \bigcap (C - B)$$

= {5,7} \begin{tabular}{l} & \{5,7\} \\ & = \{7\} \end{tabular}

In this case, $LHS \neq RHS$.

2. Let A, B, and C be three sets in a domain D; we assume that $A - C \subset B$. x is an element of D. Show that if $x \in A - B$, then $x \in C$.

We need to prove an implication of the form $p \to q$, where:

 $p: x \in A - B$ $q: x \in C.$

We will use a proof by contradiction.

Hypothesis: $p \to q$ is false, i.e. p is true and $\neg q$ is true, namely $x \in A - B$, and $x \notin C$. We also know that $A - C \subset B$.

Let x be an element of D with $x \in A - B$. By definition of the difference between two sets, $x \in A$, and $x \notin B$. Since $x \in A$ and $x \notin C$, $x \in A - C$. As $A - C \subset B$, we have $x \in B$. This leads to $x \notin B$ and $x \in B$, which is a contradiction.

Therefore, the hypothesis that $p \to q$ is false, is false, and $p \to q$ is true. This concludes the proof.

Part III: functions

1) Let n and m be two integers. Solve $\lfloor \frac{n+m}{2} \rfloor + \lfloor \frac{n-m+1}{2} \rfloor = n$.

Let n and m be two integers. Let us define $LHS = \lfloor \frac{n+m}{2} \rfloor + \lfloor \frac{n-m+1}{2} \rfloor$. Notice that as we consider division by 2, we will consider parity, and use a proof by case. We consider the parity of n + m:

a) n + m is even. There exists an integer k such that n + m = 2k. We note also the n - m = n + m - 2m = 2k - 2m. Then

$$LHS = \lfloor \frac{n+m}{2} \rfloor + \lfloor \frac{n-m+1}{2} \rfloor$$
$$= \lfloor \frac{2k}{2} \rfloor + \lfloor \frac{2k-2m+1}{2} \rfloor$$
$$= \lfloor k \rfloor + \lfloor k - m + \frac{1}{2} \rfloor$$
$$= k+k-m+\lfloor \frac{1}{2} \rfloor$$
$$= 2k-m$$
$$= n+m-m$$
$$= n$$

b) n + m is odd. There exists an integer k such that n + m = 2k + 1. We note also the n - m = n + m - 2m = 2k + 1 - 2m. Then

$$LHS = \lfloor \frac{n+m}{2} \rfloor + \lfloor \frac{n-m+1}{2} \rfloor$$
$$= \lfloor \frac{2k+1}{2} \rfloor + \lfloor \frac{2k-2m+2}{2} \rfloor$$
$$= \lfloor k + \frac{1}{2} \rfloor + \lfloor k - m + 1 \rfloor$$
$$= k+k-m+1 \rfloor$$
$$= 2k+1-m$$
$$= n+m-m$$
$$= n$$

In all cases, we have LHS = n.

2) Let x be a real number, and let n be a natural number. Show that $\lfloor \frac{x+3}{n} \rfloor = \lfloor \frac{\lfloor x \rfloor + 3}{n} \rfloor$.

Let us define $l = \lfloor \frac{x+3}{n} \rfloor$ and $m = \lfloor x \rfloor$ (l and m are both integers). By definition of floor, we have the two properties:

 $l \leq \frac{x+3}{n} < l+1$

and

 $m \le x < m + 1$

Let us multiply the first inequality by n:

 $nl \le x + 3 < n(l+1)$

Now we subtract 3 from the same inequalities:

 $nl - 3 \le x < n(l + 1) - 3$

We notice that:

 $m \le x$ and x < n(l+1) - 3; therefore m < n(l+1) - 3.

 $m \leq x$ and $nl-3 \leq x$. Therefore m and nl-3 are two integers smaller than x. By definition of floor, m is the largest integer smaller that x. Therefore $nl - 3 \le m$.

Combining those two inequalities, we get $nl - 3 \le m < n(l+1) - 3$. After addition of 3, and division by $n, l \le \frac{m+3}{n} < l+1$. Therefore l is the floor of $\frac{m+3}{n}$. Replacing l and m by their values, we get:

$$l = \left\lfloor \frac{x+3}{n} \right\rfloor = \left\lfloor \frac{m+3}{n} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor + 3}{n} \right\rfloor$$

The property is therefore true.

Part III: Proofs

Show that $\{p \mid p \text{ is prime}\} \cap \{k^2 - 1 \mid k \in \mathbb{N}\} = 3.$

Let $A = \{p \mid p \text{ is prime}\}$ and $B = \{k^2 - 1 \mid k \in \mathbb{Z}\}$. Both sets are sets of integers. An element n of $A \cap B$ satisfy the two properties:

- a) n is prime
- b) There exists $k \in \mathbb{Z}$ such that $n = k^2 1$

Notice that $n = k^2 - 1 = (k - 1)(k + 1)$. As n is prime, and $k \ge 1$, we must have k - 1 = 1, i.e. k = 2. Therefore n = 3, and $A \cap B = \{3\}$.

Extra credit

Let x be a real number. Solve $\frac{x-1}{2} = \lfloor \frac{x}{2} \rfloor - \lfloor \frac{x+1}{2} \rfloor$. We notice first that $\frac{x-1}{2}$ must be an integer, as it is the difference between two floors. Notice also that $\frac{x+1}{2} = \frac{x-1}{2} + 1$ and therefore $\frac{x+1}{2}$ is also an integer. Replacing in the equation above, we get:

$$\frac{x-1}{2} + \lfloor \frac{x+1}{2} \rfloor = \lfloor \frac{x}{2} \rfloor$$
$$\frac{x-1}{2} + \frac{x+1}{2} = \lfloor \frac{x}{2} \rfloor$$
$$x = \lfloor \frac{x}{2} \rfloor$$

Therefore x is also an integer. We consider 2 cases:

a) x is even. There exists an integer k such that x = 2k. The equation becomes:

$$2k = \lfloor \frac{x}{2} \rfloor$$
$$= \lfloor \frac{2k}{2} \rfloor$$
$$= k$$

This would mean that k = 0, i.e. x = 0. But then $\frac{x-1}{2}$ would not be an integer. There are no even solutions to the equation.

b) x is odd. There exists an integer k such that x = 2k + 1. The equation becomes:

$$2k + 1 = \lfloor \frac{x}{2} \rfloor$$
$$= \lfloor \frac{2k + 1}{2} \rfloor$$
$$= k$$

This equation has k = -1 for solution, in which case x = -1.

Verification:

- a) $\frac{x-1}{2} = -1$
- b) $\lfloor \frac{x}{2} \rfloor \lfloor \frac{x+1}{2} \rfloor = \lfloor \frac{-1}{2} \rfloor \lfloor \frac{-1+1}{2} \rfloor = -1$

Therefore the only solution to the equation is x = -1.