CHAPTER 3

Section 3.1

1. $\max :=1, i:=2, \max :=8, i:=3, \max :=12, i:=4$,
$i:=5, i:=6, i:=7, \max :=14, i:=8, i:=9, i:=10$,
$i:=11$
2. procedure $\operatorname{AddUp}\left(a_{1}, \ldots, a_{n}\right.$: integers)

$$
\begin{aligned}
& \text { sum }:=a_{1} \\
& \text { for } i:=2 \text { to } n \\
& \quad \text { sum }:=\operatorname{sum}+a_{i}
\end{aligned}
$$

return sum
5. procedure duplicates $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers in nondecreasing order)
$k:=0$ \{this counts the duplicates $\}$
$j:=2$
while $j \leq n$
if $a_{j}=a_{j-1}$ then
$k:=k+1$
$c_{k}:=a_{j}$
while $j \leq n$ and $a_{j}=c_{k}$
$j:=j+1$
$j:=j+1$
$\left\{c_{1}, c_{2}, \ldots, c_{k}\right.$ is the desired list $\}$
7. procedure last even location $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers)
$k:=0$
for $i:=1$ to n
if a_{i} is even then $k:=i$
return $k\{k=0$ if there are no evens $\}$
9. procedure palindrome check $\left(a_{1} a_{2} \ldots a_{n}\right.$: string)
answer := true
for $i:=1$ to $\lfloor n / 2\rfloor$
if $a_{i} \neq a_{n+1-i}$ then answer $:=$ false
return answer
11. procedure interchange (x, y : real numbers)
$z:=x$
$x:=y$
$y:=z$
The minimum number of assignments needed is three.
13. Linear search: $i:=1, i:=2, i:=3, i:=4, i:=5$, $i:=6, i:=7$, location $:=7$; binary search: $i:=1, j:=8$, $m:=4, i:=5, m:=6, i:=7, m:=7, j:=7$, location $:=7$
15. procedure $\operatorname{insert}\left(x, a_{1}, a_{2}, \ldots, a_{n}:\right.$ integers $)$
$\left\{\right.$ the list is in order: $\left.a_{1} \leq a_{2} \leq \cdots \leq a_{n}\right\}$
$a_{n+1}:=x+1$
$i:=1$
while $x>a_{i}$

$$
i:=i+1
$$

for $j:=0$ to $n-i$
$a_{n-j+1}:=a_{n-j}$
$a_{i}:=x$
$\{x$ has been inserted into correct position $\}$
17. procedure $\operatorname{first} \operatorname{largest}\left(a_{1}, \ldots, a_{n}\right.$: integers $)$

```
\(\max :=a_{1}\)
location \(:=1\)
for \(i:=2\) to \(n\)
    if \(\max <a_{i}\) then
        \(\max :=a_{i}\)
        location \(:=i\)
return location
```

19. procedure mean-median-max-min(a, b, c : integers)
mean $:=(a+b+c) / 3$
\{the six different orderings of a, b, c with respect to \geq will be handled separately
if $a \geq b$ then if $b \geq c$ then median $:=b ;$ max $:=a ;$ min $:=c$
(The rest of the algorithm is similar.)
20. procedure first-three $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers)
if $a_{1}>a_{2}$ then interchange a_{1} and a_{2}
if $a_{2}>a_{3}$ then interchange a_{2} and a_{3}
if $a_{1}>a_{2}$ then interchange a_{1} and a_{2}
21. procedure $\operatorname{onto}(f$: function from A to B where

$$
\begin{aligned}
& \quad A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}, a_{1}, \ldots, a_{n}, \\
& b_{1}, \ldots, b_{m} \text { are integers) } \\
& \text { for } i:=1 \text { to } m \\
& \operatorname{hit}\left(b_{i}\right):=0 \\
& \text { count }:=0 \\
& \text { for } j:=1 \text { to } n \\
& \text { if } \operatorname{hit}\left(f\left(a_{j}\right)\right)=0 \text { then } \\
& \quad \operatorname{hit}\left(f\left(a_{j}\right)\right):=1 \\
& \text { count }:=\text { count }+1 \\
& \text { if } \text { count }=m \text { then return true else return false }
\end{aligned}
$$

25. procedure ones(a : bit string, $a=a_{1} a_{2} \ldots a_{n}$)
count:=0
for $i:=1$ to n
if $a_{i}:=1$ then
count $:=$ count +1
return count
26. procedure ternary $\operatorname{search}\left(s\right.$: integer, $a_{1}, a_{2}, \ldots, a_{n}$: increasing integers)
$i:=1$
$j:=n$
while $i<j-1$
$l:=\lfloor(i+j) / 3\rfloor$
$u:=\lfloor 2(i+j) / 3\rfloor$
if $x>a_{u}$ then $i:=u+1$
else if $x>a_{l}$ then
$i:=l+1$
$j:=u$
else $j:=l$
if $x=a_{i}$ then location $:=i$
else if $x=a_{j}$ then location $:=j$
else location $:=0$
return location $\{0$ if not found $\}$
27. procedure find a mode ($a_{1}, a_{2}, \ldots, a_{n}$: nondecreasing integers)
modecount $:=0$
$i:=1$
while $i \leq n$
value $:=a_{i}$
count $:=1$
while $i \leq n$ and $a_{i}=$ value
count $:=$ count +1
$i:=i+1$
if count $>$ modecount then
modecount $:=$ count
mode $:=$ value
return mode
28. procedure find duplicate ($a_{1}, a_{2}, \ldots, a_{n}$: integers)
location :=0
$i:=2$
while $i \leq n$ and location $=0$
$j:=1$
while $j<i$ and location $=0$
if $a_{i}=a_{j}$ then location $:=i$
else $j:=j+1$
$i:=i+1$
return location
\{location is the subscript of the first value that repeats a previous value in the sequence\}
29. procedure find decrease ($a_{1}, a_{2}, \ldots, a_{n}$: positive integers)
location $:=0$
$i:=2$
while $i \leq n$ and location $=0$
if $a_{i}<a_{i-1}$ then location $:=i$
else $i:=i+1$
return location
\{location is the subscript of the first value less than the immediately preceding one\}
30. At the end of the first pass: $1,3,5,4,7$; at the end of the second pass: $1,3,4,5,7$; at the end of the third pass: $1,3,4$, 5,7 ; at the end of the fourth pass: $1,3,4,5,7$
31. procedure better bubblesort (a_{1}, \ldots, a_{n} : integers)
$i:=1$; done $:=$ false
while $i<n$ and done $=$ false
done $:=$ true
for $j:=1$ to $n-i$
if $a_{j}>a_{j+1}$ then
interchange a_{j} and a_{j+1}
done $:=$ false
$i:=i+1$
$\left\{a_{1}, \ldots, a_{n}\right.$ is in increasing order $\}$
32. At the end of the first, second, and third passes: 1, 3, 5, 7, 4; at the end of the fourth pass: $1,3,4,5,7 \quad 41$. a) $1,5,4,3$, $2 ; 1,2,4,3,5 ; 1,2,3,4,5 ; 1,2,3,4,5 \quad$ b) $1,4,3,2$, $5 ; 1,2,3,4,5 ; 1,2,3,4,5 ; 1,2,3,4,5$ c) $1,2,3,4$, $5 ; 1,2,3,4,5 ; 1,2,3,4,5 ; 1,2,3,4,5$ 43. We carry
out the linear search algorithm given as Algorithm 2 in this section, except that we replace $x \neq a_{i}$ by $x<a_{i}$, and we replace the else clause with else location $:=n+1$. 45. $2+3+4+\cdots+n=\left(n^{2}+n-2\right) / 2 \quad$ 47. Find the location for the 2 in the list 3 (one comparison), and insert it in front of the 3 , so the list now reads $2,3,4,5,1,6$. Find the location for the 4 (compare it to the 2 and then the 3), and insert it, leaving $2,3,4,5,1,6$. Find the location for the 5 (compare it to the 3 and then the 4), and insert it, leaving $2,3,4,5,1,6$. Find the location for the 1 (compare it to the 3 and then the 2 and then the 2 again), and insert it, leaving $1,2,3,4,5,6$. Find the location for the 6 (compare it to the 3 and then the 4 and then the 5), and insert it, giving the final answer $1,2,3,4,5,6$.
33. procedure binary insertion $\operatorname{sort}\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: real numbers with $n \geq 2$)
for $j:=2$ to n
\{binary search for insertion location i \}
left $:=1$
right $:=j-1$
while left $<$ right middle $:=\lfloor(l e f t+$ right $) / 2\rfloor$ if $a_{j}>a_{\text {middle }}$ then left $:=$ middle +1 else right $:=$ middle
if $a_{j}<a_{\text {left }}$ then $i:=$ left else $i:=$ left +1
\{insert a_{j} in location i by moving a_{i} through a_{j-1} toward back of list\}

$$
m:=a_{j}
$$

for $k:=0$ to $j-i-1$
$a_{j-k}:=a_{j-k-1}$
$a_{i}:=m$
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right.$ are sorted $\}$
$\begin{array}{ll}\text { 51. The variation from Exercise } 50 & \text { 53. a) Two quarters, one }\end{array}$ penny b) Two quarters, one dime, one nickel, four pennies c) A three quarters, one penny d) Two quarters, one dime 55. Greedy algorithm uses fewest coins in parts (a), (c), and (d). a) Two quarters, one penny b) Two quarters, one dime, nine pennies c) Three quarters, one penny d) Two quarters, one dime 57. The 9:00-9:45 talk, the 9:50-10:15 talk, the 10:15-10:45 talk, the 11:00-11:15 talk 59. a) Order the talks by starting time. Number the lecture halls $1,2,3$, and so on. For each talk, assign it to lowest numbered lecture hall that is currently available. b) If this algorithm uses n lecture halls, then at the point the nth hall was first assigned, it had to be used (otherwise a lower-numbered hall would have been assigned), which means that n talks were going on simultaneously (this talk just assigned and the $n-1$ talks currently in halls 1 through $n-1$). 61. Here we assume that the men are the suitors and the women the suitees.
procedure $\operatorname{stable}\left(M_{1}, M_{2}, \ldots, M_{s}, W_{1}, W_{2}, \ldots, W_{s}\right.$:
preference lists)
for $i:=1$ to s
mark man i as rejected
for $i:=1$ to s
set man i 's rejection list to be empty
for $j:=1$ to s
set woman j 's proposal list to be empty
while rejected men remain
for $i:=1$ to s
if man i is marked rejected then add i to the proposal list for the woman j who ranks highest on his preference list but does not appear on his rejection list, and mark i as not rejected
for $j:=1$ to s
if woman j 's proposal list is nonempty then remove from j 's proposal list all men i except the man i_{0} who ranks highest on her preference list, and for each such man i mark him as rejected and add j to his rejection list for $j:=1$ to s
match j with the one man on j 's proposal list \{This matching is stable.\}
63. If the assignment is not stable, then there is a man m and a woman w such that m prefers w to the woman w^{\prime} with whom he is matched, and w prefers m to the man with whom she is matched. But m must have proposed to w before he proposed to w^{\prime}, because he prefers the former. Because m did not end up matched with w, she must have rejected him. Women reject a suitor only when they get a better proposal, and they eventually get matched with a pending suitor, so the woman with whom w is matched must be better in her eyes than m, contradicting our original assumption. Therefore the marriage is stable. 65. Run the two programs on their inputs concurrently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) $C=1, k=10$ b) $C=4, k=7$ c) Nod) $C=5, k=1 \mathbf{e}) C=1, k=0$ f) $C=$ 1, $k=2 \quad$ 3. $x^{4}+9 x^{3}+4 x+7 \leq 4 x^{4}$ for all $x>9$; witnesses $C=4, k=9 \quad$ 5. $\left(x^{2}+1\right) /(x+1)=x-1+2 /(x+1)<x$ for all $x>1$; witnesses $C=1, k=1 \quad 7$. The choices of C and k are not unique. a) $n=3, C=3, k=1 \quad$ b) $n=3$, $C=4, k=1$ c) $n=1, C=2, k=1 \mathbf{d)} n=0, C=2, k=1$ 9. $x^{2}+4 x+17 \leq 3 x^{3}$ for all $x>17$, so $x^{2}+4 x+17$ is $O\left(x^{3}\right)$, with witnesses $C=3, k=17$. However, if x^{3} were $O\left(x^{2}+4 x+17\right)$, then $x^{3} \leq C\left(x^{2}+4 x+17\right) \leq 3 C x^{2}$ for some C, for all sufficiently large x, which implies that $x \leq 3 C$ for all sufficiently large x, which is impossible. Hence, x^{3} is not $O\left(x^{2}+4 x+17\right)$. 11. $3 x^{4}+1 \leq 4 x^{4}=8\left(x^{4} / 2\right)$ for all $x>1$, so $3 x^{4}+1$ is $O\left(x^{4} / 2\right)$, with witnesses $C=8, k=1$. Also $x^{4} / 2 \leq 3 x^{4}+1$ for all $x>0$, so $x^{4} / 2$ is $O\left(3 x^{4}+1\right)$, with witnesses $C=1, k=0$. 13. Because $2^{n} \leq 3^{n}$ for all $n>0$, it follows that 2^{n} is $O\left(3^{n}\right)$, with witnesses $C=1, k=0$. However, if 3^{n} were $O\left(2^{n}\right)$, then for some $C, 3^{n} \leq C \cdot 2^{n}$ for all sufficiently large n. This says that $C \geq(3 / 2)^{n}$ for all sufficiently large n, which is impossible. Hence, 3^{n} is not $O\left(2^{n}\right)$. 15. All functions for which there exist real numbers k and C with $|f(x)| \leq C$ for $x>k$. These are the functions $f(x)$ that are bounded for all sufficiently large x. 17. There are constants C_{1}, C_{2}, k_{1}, and k_{2} such that $|f(x)| \leq C_{1}|g(x)|$ for all $x>k_{1}$ and $|g(x)| \leq C_{2}|h(x)|$ for all $x>k_{2}$. Hence, for $x>$
$\max \left(k_{1}, k_{2}\right)$ it follows that $|f(x)| \leq C_{1}|g(x)| \leq C_{1} C_{2}|h(x)|$. This shows that $f(x)$ is $O(h(x))$. 19. 2^{n+1} is $O\left(2^{n}\right)$; $2^{2 n}$ is not. 21. $1000 \log n, \sqrt{n}, n \log n, n^{2} / 1000000,2^{n}$, $3^{n}, 2 n!$ 23. The algorithm that uses $n \log n$ operations 25. a) $O\left(n^{3}\right)$ b) $O\left(n^{5}\right) \quad$ c) $O\left(n^{3} \cdot n!\right.$ 27. a) $O\left(n^{2} \log n\right)$ b) $O\left(n^{2}(\log n)^{2}\right)$ c) $O\left(n^{2^{n}}\right) \quad$ 29. a) Neither $\Theta\left(x^{2}\right)$ nor $\Omega\left(x^{2}\right)$ b) $\Theta\left(x^{2}\right)$ and $\Omega\left(x^{2}\right) \quad$ c) Neither $\Theta\left(x^{2}\right)$ nor $\Omega\left(x^{2}\right)$ d) $\Omega\left(x^{2}\right)$, but not $\Theta\left(x^{2}\right)$ e) $\Omega\left(x^{2}\right)$, but not $\Theta\left(x^{2}\right)$ f) $\Omega\left(x^{2}\right)$ and $\Theta\left(x^{2}\right)$ 31. If $f(x)$ is $\Theta(g(x))$, then there exist constants C_{1} and C_{2} with $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$. It follows that $|f(x)| \leq C_{2}|g(x)|$ and $|g(x)| \leq\left(1 / C_{1}\right)|f(x)|$ for $x>k$. Thus, $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. Conversely, suppose that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. Then there are constants C_{1}, C_{2}, k_{1}, and k_{2} such that $|f(x)| \leq$ $C_{1}|g(x)|$ for $x>k_{1}$ and $|g(x)| \leq C_{2}|f(x)|$ for $x>k_{2}$. We can assume that $C_{2}>0$ (we can always make C_{2} larger). Then we have $\left(1 / C_{2}\right)|g(x)| \leq|f(x)| \leq C_{1}|g(x)|$ for $x>\max \left(k_{1}, k_{2}\right)$. Hence, $f(x)$ is $\Theta(g(x))$. 33. If $f(x)$ is $\Theta(g(x))$, then $f(x)$ is both $O(g(x))$ and $\Omega(g(x))$. Hence, there are positive constants C_{1}, k_{1}, C_{2}, and k_{2} such that $|f(x)| \leq C_{2}|g(x)|$ for all $x>k_{2}$ and $|f(x)| \geq C_{1}|g(x)|$ for all $x>k_{1}$. It follows that $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$ whenever $x>k$, where $k=\max \left(k_{1}, k_{2}\right)$. Conversely, if there are positive constants C_{1}, C_{2}, and k such that $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$ for $x>k$, then taking $k_{1}=k_{2}=k$ shows that $f(x)$ is both $O(g(x))$ and $\Theta(g(x))$.

2. If $f(x)$ is $\Theta(1)$, then $|f(x)|$ is bounded between positive constants C_{1} and C_{2}. In other words, $f(x)$ cannot grow larger than a fixed bound or smaller than the negative of this bound and must not get closer to 0 than some fixed bound. 39. Because $f(x)$ is $O(g(x))$, there are constants C and k such that $|f(x)| \leq C|g(x)|$ for $x>k$. Hence, $\left|f^{n}(x)\right| \leq C^{n}\left|g^{n}(x)\right|$ for $x>k$, so $f^{n}(x)$ is $O\left(g^{n}(x)\right)$ by taking the constant to be C^{n}. 41. Because $f(x)$ and $g(x)$ are increasing and unbounded, we can assume $f(x) \geq 1$ and $g(x) \geq 1$ for sufficiently large x. There are constants C and k with $f(x) \leq C g(x)$ for $x>k$. This implies that $\log f(x) \leq \log C+\log g(x)<2 \log g(x)$ for sufficiently large x. Hence, $\log f(x)$ is $O(\log g(x))$. 43. By definition there are positive constraints C_{1}, C_{1}^{\prime}, $C_{2}, C_{2}^{\prime}, k_{1}, k_{1}^{\prime}, k_{2}$, and k_{2}^{\prime} such that $f_{1}(x) \geq C_{1}|g(x)|$ for all $x>k_{1}, f_{1}(x) \leq C_{1}^{\prime}|g(x)|$ for all $x>k_{1}^{\prime}$, $f_{2}(x) \geq C_{2}|g(x)|$ for all $x>k_{2}$, and $f_{2}(x) \leq C_{2}^{\prime}|g(x)|$ for all $x>k_{2}^{\prime}$. Adding the first and third inequalities shows that $f_{1}(x)+f_{2}(x) \geq\left(C_{1}+C_{2}\right)|g(x)|$ for all $x>k$ where
