19. a) Both sides equal $\{x \mid x \in A \land x \notin B\}$. **b)** $A = A \cap U = A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$ **21.** $x \in A \cup (B \cup C) \equiv (x \in A) \lor (x \in (B \cup C)) \equiv (x \in A) \lor (x \in B \lor x \in C) \equiv (x \in A \lor x \in B) \lor (x \in C) \equiv x \in (A \cup B) \cup C$ **23.** $x \in A \cup (B \cap C) \equiv (x \in A) \lor (x \in (B \cap C)) \equiv (x \in A) \lor (x \in B \land x \in C) \equiv (x \in A \lor x \in B) \land (x \in A \lor x \in C) \equiv (x \in A \lor x \in B) \land (x \in A \lor x \in C) \equiv x \in (A \cup B) \cap (A \cup C)$ **25. a)** $\{4, 6\}$ **b)** $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ **c)** $\{4, 5, 6, 8, 10\}$ **d)** $\{0, 2, 4, 5, 6, 7, 8, 9, 10\}$ **27. a)** The double-shaded portion is the desired set.

b) The desired set is the entire shaded portion.

c) The desired set is the entire shaded portion.

29. a) $B \subseteq A$ b) $A \subseteq B$ c) $A \cap B = \emptyset$ d) Nothing, because this is always true **e**) A = B **31.** $A \subseteq B \equiv \forall x (x \in A \rightarrow$ $x \in B$) $\equiv \forall x (x \notin B \to x \notin A) \equiv \forall x (x \in \overline{B} \to x \in A)$ $\overline{A} \equiv \overline{B} \subseteq \overline{A}$ 33. The set of students who are computer science majors but not mathematics majors or who are mathematics majors but not computer science majors 35. An element is in $(A \cup B) - (A \cap B)$ if it is in the union of A and B but not in the intersection of A and B, which means that it is in either A or B but not in both A and B. This is exactly what it means for an element to belong to $A \oplus B$. **37.** a) $A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$ **b**) $A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A$ **c**) $A \oplus U =$ $(A - U) \cup (U - A) = \emptyset \cup \overline{A} = \overline{A} \ \mathbf{d}) A \oplus \overline{A} = (A - \overline{A}) \cup A \oplus \overline{A}$ $(\overline{A} - A) = A \cup \overline{A} = U$ **39.** $B = \emptyset$ **41.** Yes **43.** Yes **45.** If $A \cup B$ were finite, then it would have *n* elements for some natural number n. But A already has more than n elements, because it is infinite, and $A \cup B$ has all the elements that A has, so $A \cup B$ has more than *n* elements. This contradiction shows that $A \cup B$ must be infinite. **47. a**) $\{1, 2, 3, ..., n\}$ **b**) $\{1\}$ **49.** a) A_n b) $\{0, 1\}$ **51.** a) Z, $\{-1, 0, 1\}$ b) Z - $\{0\}, \emptyset$ c) **R**, [-1, 1] d) $[1, \infty)$, Ø **53.** a) $\{1, 2, 3, 4, 7, 8, 9, 10\}$ **b**) {2, 4, 5, 6, 7} **c**) {1, 10} **55.** The bit in the *i*th position of the bit string of the difference of two sets is 1 if the *i*th bit of the first string is 1 and the *i*th bit of the second string is 0, and is 0 otherwise. 57. a) 11 1110 0000 0000 0000 0000 $0000 \lor 01\ 1100\ 1000\ 0000\ 0100\ 0101\ 0000 = 11\ 1110\ 1000$ 0000 0100 0101 0000, representing $\{a, b, c, d, e, g, p, t, v\}$ **b**) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000 $0100 \ 0101 \ 0000 = 01 \ 1100 \ 0000 \ 0000 \ 0000 \ 0000,$ representing $\{b, c, d\}$ c) (11 1110 0000 0000 0000 0000 $0000 \ \lor \ 00 \ 0110 \ 0110 \ 0001 \ 1000 \ 0110 \ 0110) \ \land \ (01 \ 1100$ $(0111) = 11\ 1110\ 0110\ 0001\ 1000\ 0110\ 0110\ \land\ 01\ 1110$ $1010\ 0000\ 1100\ 0111\ 0111 = 01\ 1110\ 0010\ 0000\ 1000\ 0110$ 0110, representing $\{b, c, d, e, i, o, t, u, x, y\}$ **d**) 11 1110 0000 0000 0000 0000 0000 \vee 01 1100 1000 0000 0100 0101 $0000 \lor 00\ 1010\ 0010\ 0000\ 1000\ 0010\ 0111 \lor 00\ 0110\ 0110$ $0001 \ 1000 \ 0110 \ 0110 = 11 \ 1110 \ 1110 \ 0001 \ 1100 \ 0111$ 0111, representing $\{a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z\}$ **59.** a) $\{1, 2, 3, \{1, 2, 3\}\}$ b) $\{\emptyset\}$ c) $\{\emptyset, \{\emptyset\}\}$ d) $\{\emptyset, \{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}\}$ **61.** a) $\{3 \cdot a, 3 \cdot b, 1 \cdot c, 4 \cdot d\}$ b) $\{2 \cdot a, 2 \cdot b\}$ **c**) $\{1 \cdot a, 1 \cdot c\}$ **d**) $\{1 \cdot b, 4 \cdot d\}$ **e**) $\{5 \cdot a, 5 \cdot b, 1 \cdot c, 4 \cdot d\}$ 63. $\overline{F} = \{0.4 \text{ Alice, } 0.1 \text{ Brian, } 0.6 \text{ Fred, } 0.9 \text{ Oscar, } 0.5 \text{ Rita}\},\$ $\overline{R} = \{0.6 \text{ Alice}, 0.2 \text{ Brian}, 0.8 \text{ Fred}, 0.1 \text{ Oscar}, 0.3 \text{ Rita}\}$ **65.** {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita}

Section 2.3

1. a) f(0) is not defined. b) f(x) is not defined for x < 0. c) f(x) is not well-defined because there are two distinct values assigned to each x. **3. a**) Not a function **b**) A function c) Not a function 5. a) Domain the set of bit strings; range the set of integers **b**) Domain the set of bit strings; range the set of even nonnegative integers c) Domain the set of bit strings; range the set of nonnegative integers not exceeding 7 d) Domain the set of positive integers; range the set of squares of positive integers = $\{1, 4, 9, 16, \ldots\}$ **7.** a) Domain $\mathbf{Z}^+ \times \mathbf{Z}^+$; range \mathbf{Z}^+ b) Domain \mathbf{Z}^+ ; range $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ c) Domain the set of bit strings; range N d) Domain the set of bit strings; range N 9. a) 1 **b**) 0 **c**) 0 **d**) -1 **e**) 3 **f**) -1 **g**) 2 **h**) 1 **11.** Only the function in part (a) 13. Only the functions in parts (a) and (d) **15.** a) Onto b) Not onto c) Onto d) Not onto e) Onto 17. a) Depends on whether teachers share offices b) Oneto-one assuming only one teacher per bus c) Most likely not one-to-one, especially if salary is set by a collective bargaining agreement d) One-to-one **19.** Answers will vary. **a**) Set of offices at the school; probably not onto b) Set of buses going on the trip; onto, assuming every bus gets a teacher chaperone c) Set of real numbers; not onto d) Set of strings of nine digits with hyphens after third and fifth digits; not onto **21.** a) The function f(x) with f(x) = 3x + 1 when $x \ge 0$ and f(x) = -3x + 2 when x < 0 b) f(x) = |x| + 1c) The function f(x) with f(x) = 2x + 1 when x > 0 and f(x) = -2x when x < 0 d) $f(x) = x^2 + 1$ 23. a) Yes **b**) No **c**) Yes **d**) No **25.** Suppose that f is strictly decreasing. This means that f(x) > f(y) whenever x < y. To show that g is strictly increasing, suppose that x < y. Then g(x) = 1/f(x) < 1/f(y) = g(y). Conversely, suppose that g is strictly increasing. This means that g(x) < g(y) whenever x < y. To show that f is strictly decreasing, suppose that x < y. Then f(x) = 1/g(x) > 1/g(y) = f(y). 27. a) Let f be a given strictly decreasing function from \mathbf{R} to itself. If

a < b, then f(a) > f(b); if a > b, then f(a) < f(b). Thus if $a \neq b$, then $f(a) \neq f(b)$. **b**) Answers will vary; for example, f(x) = 0 for x < 0 and f(x) = -x for $x \ge 0$. **29.** The function is not one-to-one, so it is not invertible. On the restricted domain, the function is the identity function on the nonnegative real numbers, f(x) = x, so it is its own inverse. **31.** a) $f(S) = \{0, 1, 3\}$ b) $f(S) = \{0, 1, 3, 5, 8\}$ c) $f(S) = \{0, 8, 16, 40\}$ d) $f(S) = \{1, 12, 33, 65\}$ **33.** a) Let x and y be distinct elements of A. Because g is oneto-one, g(x) and g(y) are distinct elements of B. Because f is one-to-one, $f(g(x)) = (f \circ g)(x)$ and $f(g(y)) = (f \circ g)(y)$ are distinct elements of C. Hence, $f \circ g$ is one-to-one. **b**) Let $y \in C$. Because f is onto, y = f(b) for some $b \in B$. Now because g is onto, b = g(x) for some $x \in A$. Hence, $y = f(b) = f(g(x)) = (f \circ g)(x)$. It follows that $f \circ g$ is onto. **35.** No. For example, suppose that $A = \{a\}, B = \{b, c\}$, and $C = \{d\}$. Let g(a) = b, f(b) = d, and f(c) = d. Then f and $f \circ g$ are onto, but g is not. 37. $(f + g)(x) = x^2 + x + 3$, $(fg)(x) = x^3 + 2x^2 + x + 2$ **39.** *f* is one-to-one because $f(x_1) = f(x_2) \rightarrow ax_1 + b = ax_2 + b \rightarrow ax_1 = ax_2 \rightarrow x_1 =$ x_2 . f is onto because $f((y-b)/a) = y \cdot f^{-1}(y) = (y-b)/a$. **41.** a) $A = B = \mathbf{R}, S = \{x \mid x > 0\}, T = \{x \mid x < 0\}$ $f(x) = x^2$ b) It suffices to show that $f(S) \cap f(T) \subseteq f(S \cap T)$. Let $y \in B$ be an element of $f(S) \cap f(T)$. Then $y \in f(S)$, so $y = f(x_1)$ for some $x_1 \in S$. Similarly, $y = f(x_2)$ for some $x_2 \in T$. Because f is one-to-one, it follows that $x_1 = x_2$. Therefore $x_1 \in S \cap T$, so $y \in f(S \cap T)$. **43.** a) $\{x \mid 0 \le x < 1\}$ b) $\{x \mid -1 \le x < 2\}$ c) \emptyset **45.** $f^{-1}(\overline{S}) = \{x \in A \mid f(x) \notin S\} = \overline{\{x \in A \mid f(x) \in S\}}$ $= \overline{f^{-1}(S)}$ 47. Let $x = \lfloor x \rfloor + \epsilon$, where ϵ is a real number with $0 \le \epsilon < 1$. If $\epsilon < \frac{1}{2}$, then $\lfloor x \rfloor - 1 < x - \frac{1}{2} < \lfloor x \rfloor$, so $\lceil x - \frac{1}{2} \rceil = \lfloor x \rfloor$ and this is the integer closest to x. If $\epsilon > \frac{1}{2}$, then $\lfloor x \rfloor < x - \frac{1}{2} < \lfloor x \rfloor + 1$, so $\lceil x - \frac{1}{2} \rceil = \lfloor x \rfloor + 1$ and this is the integer closest to x. If $\epsilon = \frac{1}{2}$, then $\lceil x - \frac{1}{2} \rceil = \lfloor x \rfloor$, which is the smaller of the two integers that surround x and are the same distance from x. **49.** Write the real number xas $|x| + \epsilon$, where ϵ is a real number with $0 \le \epsilon < 1$. Because $\epsilon = x - |x|$, it follows that $0 \le -|x| < 1$. The first two inequalities, $x - 1 < \lfloor x \rfloor$ and $\lfloor x \rfloor \le x$, follow directly. For the other two inequalities, write $x = \lceil x \rceil - \epsilon'$, where $0 \le \epsilon' < 1$. Then $0 \leq \lfloor x \rfloor - x < 1$, and the desired inequality follows. **51.** a) If x < n, because $|x| \le x$, it follows that |x| < n. Suppose that $x \ge n$. By the definition of the floor function, it follows that |x| > n. This means that if |x| < n, then x < n. **b**) If n < x, then because $x \leq \lceil x \rceil$, it follows that $n \leq \lceil x \rceil$. Suppose that $n \ge x$. By the definition of the ceiling function, it follows that $\lceil x \rceil \leq n$. This means that if $n < \lceil x \rceil$, then n < x. 53. If n is even, then n = 2k for some integer k. Thus, $\lfloor n/2 \rfloor = \lfloor k \rfloor = k = n/2$. If *n* is odd, then n = 2k + 1for some integer k. Thus, $\lfloor n/2 \rfloor = \lfloor k + \frac{1}{2} \rfloor = k = (n-1)/2$. 55. Assume that $x \ge 0$. The left-hand side is [-x] and the right-hand side is $-\lfloor x \rfloor$. If x is an integer, then both sides equal -x. Otherwise, let $x = n + \epsilon$, where n is a natural number and ϵ is a real number with $0 \leq \epsilon < 1$. Then $[-x] = [-n - \epsilon] = -n$ and $-\lfloor x \rfloor = -\lfloor n + \epsilon \rfloor = -n$ also. When x < 0, the equation also holds because it can be obtained by substituting -x for x. 57. $\lceil b \rceil - \lfloor a \rfloor - 1$ 59. a) 1 b) 3 c) 126 d) 3600 61. a) 100 b) 256 c) 1030 d) 30,200

g) See part (a). **69.** $f^{-1}(y) = (y-1)^{1/3}$ **71. a)** $f_{A \cap B}(x) = 1 \Leftrightarrow x \in A \cap B \Leftrightarrow x \in A$ and $x \in B \Leftrightarrow f_A(x) = 1$ and $f_B(x) = 1 \Leftrightarrow f_A(x)f_B(x) = 1$ **b)** $f_{A \cup B}(x) = 1 \Leftrightarrow x \in A \cup B \Leftrightarrow x \in A$ or $x \in B \Leftrightarrow f_A(x) = 1$ or $f_B(x) = 1 \Leftrightarrow f_A(x) + f_B(x) - f_A(x)f_B(x) = 1$ **c)** $f_{\overline{A}}(x) = 1 \Leftrightarrow x \in \overline{A} \Leftrightarrow x \notin A \Leftrightarrow f_A(x) = 0 \Leftrightarrow 1 - f_A(x) = 1$ **d)** $f_{A \oplus B}(x) = 1 \Leftrightarrow x \in A \oplus B \Leftrightarrow (x \in A \text{ and } x \notin B) \text{ or } (x \notin A \text{ and } x \in B) \Leftrightarrow f_A(x) + f_B(x) - 2f_A(x)f_B(x) = 1$ **73. a)** True; because $\lfloor x \rfloor$ is already an integer, $\lceil \lfloor x \rfloor \rceil = \lfloor x \rfloor$. **b)** False; $x = \frac{1}{2}$ is a counterexample. **c)** True; if x or y is an integer, then by property 4b in Table 1, the difference is 0. If

neither x nor y is an integer, then $x = n + \epsilon$ and $y = m + \delta$, where *n* and *m* are integers and ϵ and δ are positive real numbers less than 1. Then m + n < x + y < m + n + 2, so [x + y] is either m + n + 1 or m + n + 2. Therefore, the given expression is either (n + 1) + (m + 1) - (m + n + 1) = 1 or (n + 1) + (m + 1) - (m + n + 2) = 0, as desired. d) False; $x = \frac{1}{4}$ and y = 3 is a counterexample. e) False; $x = \frac{1}{2}$ is a counterexample. **75.** a) If x is a positive integer, then the two sides are equal. So suppose that $x = n^2 + m + \epsilon$, where n^2 is the largest perfect square less than x, m is a nonnegative integer, and $0 < \epsilon \le 1$. Then both \sqrt{x} and $\sqrt{\lfloor x \rfloor} = \sqrt{n^2 + m}$ are between n and n + 1, so both sides equal n. b) If x is a positive integer, then the two sides are equal. So suppose that $x = n^2 - m - \epsilon$, where n^2 is the smallest perfect square greater than x, m is a nonnegative integer, and ϵ is a real number with $0 < \epsilon \le 1$. Then both \sqrt{x} and $\sqrt{\lfloor x \rfloor} = \sqrt{n^2 - m}$ are between n - 1 and n. Therefore, both sides of the equation equal n. **77.** a) Domain is \mathbf{Z} ; codomain is \mathbf{R} ; domain of definition is the set of nonzero integers; the set of values for which f is undefined is $\{0\}$; not a total function. **b**) Domain is Z; codomain is Z; domain of definition is Z; set of values for which f is undefined is \emptyset ; total function. c) Domain is $\mathbf{Z} \times \mathbf{Z}$; codomain is **Q**; domain of definition is $\mathbf{Z} \times (\mathbf{Z} - \{0\})$; set of values for which f is undefined is $\mathbb{Z} \times \{0\}$; not a total function. d) Domain is $\mathbf{Z} \times \mathbf{Z}$; codomain is \mathbf{Z} ; domain of definition is $\mathbf{Z} \times \mathbf{Z}$; set of values for which f is undefined is \emptyset ; total function. e) Domain is $\mathbb{Z} \times \mathbb{Z}$; codomain is \mathbb{Z} ; domain of definitions is $\{(m, n) \mid m > n\}$; set of values for which f is undefined is $\{(m, n) \mid m \leq n\}$; not a total function. 79. a) By definition, to say that S has cardinality *m* is to say that *S* has exactly *m* distinct elements. Therefore we can assign the first object to 1, the second to 2, and so on. This provides the one-to-one correspondence. **b**) By part (a), there is a bijection f from S to $\{1, 2, ..., m\}$ and a bijection g from T to $\{1, 2, ..., m\}$. Then the composition $g^{-1} \circ f$ is the desired bijection from S to T.

Section 2.4

1. a) 3 b) -1 c) 787 d) 2639 **3.** a) $a_0 = 2, a_1 = 3,$ **b**) $a_0 = 1$, $a_1 = 4$, $a_2 = 27$, $a_3 = 256$ $a_2 = 5, a_3 = 9$ **c**) $a_0 = 0, a_1 = 0, a_2 = 1, a_3 = 1$ **d**) $a_0 = 0, a_1 = 1, a_1 = 1, a_2 = 1, a_3 = 1$ $a_2 = 2, a_3 = 3$ **5.** a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29 **b**) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 **c**) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9 d) -1, -2, -2, 8, 88, 656, 4912, 40064, 362368, 3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536 **f**) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 **g**) 1, 2, 2, 3, 3, 3, 3, 4, 4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be twice the previous term; the *n*th term could be obtained from the previous term by adding n - 1; the terms could be the positive integers that are not multiples of 3; there are infinitely many other possibilities. **9. a)** 2, 12, 72, 432, 2592 **b**) 2, 4, 16, 256, 65, 536 **c**) 1, 2, 5, 11, 26 **d**) 1, 1, 6, 27, 204 e) 1, 2, 0, 1, 3 **11.** a) 6, 17, 49, 143, 421 **b**) 49 = $5 \cdot 17 - 6 \cdot 6, 143 = 5 \cdot 49 - 6 \cdot 17, 421 =$ $5 \cdot 143 - 6 \cdot 49$ c) $5a_{n-1} - 6a_{n-2} = 5(2^{n-1} + 5 \cdot 14)$

 3^{n-1}) - 6(2^{n-2} + 5 · 3^{n-2}) = $2^{n-2}(10 - 6)$ + $3^{n-2}(75-30) = 2^{n-2} \cdot 4 + 3^{n-2} \cdot 9 \cdot 5 = 2^n + 3^n \cdot 5 = a_n$ 13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No h) No **15.** a) $a_{n-1} + 2a_{n-2} + 2n - 9 = -(n-1) + 2 + 2$ $[-(n-2) + 2] + 2n - 9 = -n + 2 = a_n$ b) $a_{n-1} + a_n$ $2a_{n-2} + 2n - 9 = 5(-1)^{n-1} - (n-1) + 2 + 2[5(-1)^{n-2} - (n-1)] + 2$ $(n-2) + 2] + 2n - 9 = 5(-1)^{n-2}(-1+2) - n + 2 = a_n$ c) $a_{n-1} + 2a_{n-2} + 2n - 9 = 3(-1)^{n-1} + 2^{n-1} - (n-1) + 2 + 3(-1)^{n-1} + 2^{n-1} - (n-1) + 2 + 3(-1)^{n-1} + 2^{n-1} - (n-1) + 2 + 3(-1)^{n-1} + 2^{n-1} - (n-1)^{n-1} + 2^{n-1} + 2^{n 2[3(-1)^{n-2} + 2^{n-2} - (n-2) + 2] + 2n - 9 = 3(-1)^{n-2}$ $(-1 + 2) + 2^{n-2}(2 + 2) - n + 2 = a_n$ d) $a_{n-1} + a_n$ $2a_{n-2} + 2n - 9 = 7 \cdot 2^{n-1} - (n-1) + 2 + 2[7 \cdot 2^{n-2} - 2^{n-2}]$ $(n - 2) + 2] + 2n - 9 = 2^{n-2}(7 \cdot 2 + 2 \cdot 7) - n + 2 = a_n$ **17.** a) $a_n = 2 \cdot 3^n$ b) $a_n = 2n + 3$ c) $a_n = 1 + n(n+1)/2$ **d**) $a_n = n^2 + 4n + 4$ **e**) $a_n = 1$ **f**) $a_n = (3^{n+1} - 1)/2$ **g**) $a_n = 5n!$ **h**) $a_n = 2^n n!$ **19. a**) $a_n = 3a_{n-1}$ **b**) 5,904,900 **21.** a) $a_n = n + a_{n-1}, a_0 = 0$ b) $a_{12} = 78$ c) $a_n = n(n+1)/2$ 23. B(k) = [1 + (0.07/12)]B(k-1) -100, with B(0) = 5000 **25.** a) One 1 and one 0, followed by two 1s and two 0s, followed by three 1s and three 0s, and so on; 1, 1, 1 b) The positive integers are listed in increasing order with each even positive integer listed twice; 9, 10, 10. c) The terms in odd-numbered locations are the successive powers of 2; the terms in even-numbered locations are all 0; 32, 0, 64. **d**) $a_n = 3 \cdot 2^{n-1}$; 384, 768, 1536 e) $a_n = 15 - 7(n - 1) = 22 - 7n; -34, -41, -48$ **f**) $a_n = (n^2 + n + 4)/2$; 57, 68, 80 **g**) $a_n = 2n^3$; 1024, 1458, 2000 **h**) $a_n = n! + 1$; 362881, 3628801, 39916801 27. Among the integers 1, 2, ..., a_n , where a_n is the *n*th positive integer not a perfect square, the nonsquares are a_1, a_2, \ldots, a_n and the squares are $1^2, 2^2, \ldots, k^2$, where k is the integer with $k^2 < n + k < (k + 1)^2$. Consequently, $a_n = n + k$, where $k^2 < a_n < (k + 1)^2$. To find k, first note that $k^2 < n + k < (k + 1)^2$, so $k^2 + 1 \le n + k \le (k + 1)^2 - 1$. Hence, $(k - \frac{1}{2})^2 + \frac{3}{4} = k^2 - k + 1 \le n \le k^2 + k = (k + \frac{1}{2})^2 - \frac{1}{4}$. It follows that $k - \frac{1}{2} < \sqrt{n} < k + \frac{1}{2}$, so $k = \sqrt[4]{\sqrt{n}}$ and $a_n = n + k = n + \{\sqrt{n}\}$. **29. a)** 20 **b)** 11 **c)** 30 **d**) 511 **31. a**) 1533 **b**) 510 **c**) 4923 **d**) 9842 **33. a**) 21 **b**) 78 **c**) 18 **d**) 18 **35.** $\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$ **37.** a) n^2 b) n(n + 1)/2 **39.** 15150 **41.** $\frac{n(n+1)(2n+1)}{3}$ + $\frac{n(n+1)}{2} + (n+1)(m - (n+1)^2 + 1)$, where $n = |\sqrt{m}| - 1$ **43.** a) 0 b) 1680 c) 1 d) 1024 **45.** 34

Section 2.5

1. a) Countably infinite, -1, -2, -3, -4, ... b) Countably infinite, 0, 2, -2, 4, -4, ... c) Countably infinite, 99, 98, 97, ... d) Uncountable e) Finite f) Countably infinite, 0, 7, -7, 14, -14, ... **3.** a) Countable: match *n* with the string of *n* 1s. b) Countable. To find a correspondence, follow the path in Example 4, but omit fractions in the top three rows (as well as continuing to omit fractions not in lowest terms). c) Uncountable d) Uncountable **5.** Suppose *m* new guests arrive at the fully occupied hotel. Move the guest in Room *n* to Room m + n for n = 1, 2, 3, ...; then the new guests can occupy rooms 1 to *m*. **7.** For n = 1, 2, 3, ..., put

the guest currently in Room 2n into Room n, and the guest currently in Room 2n - 1 into Room *n* of the new building. 9. Move the guess currently Room i to Room 2i + 1for $i = 1, 2, 3, \dots$ Put the *j*th guest from the kth bus into Room $2^{k}(2j + 1)$. **11.** a) A = [1, 2] (closed interval of real numbers from 1 to 2), B = [3, 4] b) $A = [1, 2] \cup \mathbb{Z}^+$, $B = [3, 4] \cup \mathbb{Z}^+ c$ A = [1, 3], B = [2, 4] 13. Suppose that A is countable. Then either A has cardinality n for some nonnegative integer n, in which case there is a one-to-one function from A to a subset of \mathbf{Z}^+ (the range is the first n positive integers), or there exists a one-to-one correspondence f from A to \mathbb{Z}^+ ; in either case we have satisfied Definition 2. Conversely, suppose that $|A| \leq |\mathbf{Z}^+|$. By definition, this means that there is a one-to-one function from A to \mathbb{Z}^+ , so A has the same cardinality as a subset of \mathbf{Z}^+ (namely the range of that function). By Exercise 16 we conclude that A is countable. **15.** Assume that *B* is countable. Then the elements of *B* can be listed as b_1, b_2, b_3, \ldots . Because A is a subset of B, taking the subsequence of $\{b_n\}$ that contains the terms that are in A gives a listing of the elements of A. Because A is uncountable, this is impossible. **17.** Assume that A - B is countable. Then, because $A = (A - B) \cup (A \cap B)$, the elements of A can be listed in a sequence by alternating elements of A - Band elements of $A \cap B$. This contradicts the uncountability of A. 19. We are given bijections f from A to B and g from C to D. Then the function from $A \times C$ to $B \times D$ that sends (a, c) to (f(a), g(c)) is a bijection. 21. By the definition of |A| < |B|, there is a one-to-one function $f : A \to B$. Similarly, there is a one-to-one function $g: B \to C$. By Exercise 33 in Section 2.3, the composition $g \circ f : A \to C$ is one-to-one. Therefore by definition $|A| \leq |C|$. 23. Using the Axiom of Choice from set theory, choose distinct elements a_1 , a_2 , a_3 , ... of A one at a time (this is possible because A is infinite). The resulting set $\{a_1, a_2, a_3, \ldots\}$ is the desired infinite subset of A. 25. The set of finite strings of characters over a finite alphabet is countably infinite, because we can list these strings in alphabetical order by length. Therefore the infinite set S can be identified with an infinite subset of this countable set, which by Exercise 16 is also countably infinite. 27. Suppose that A_1, A_2, A_3, \ldots are countable sets. Because A_i is countable, we can list its elements in a sequence as $a_{i1}, a_{i2}, a_{i3}, \ldots$. The elements of the set $\bigcup_{i=1}^{n} A_i$ can be listed by listing all terms a_{ij} with i + j = 2, then all terms a_{ij} with i + j = 3, then all terms a_{ij} with i + j = 4, and so on. 29. There are a finite number of bit strings of length m, namely, 2^m . The set of all bit, strings is the union of the sets of bit strings of length m for $m = 0, 1, 2, \dots$ Because the union of a countable number of countable sets is countable (see Exercise 27), there are a countable number of bit strings. **31.** It is clear from the formula that the range of values the function takes on for a fixed value of m + n, say m + n = x, is (x - 2)(x - 1)/2 + 1through (x-2)(x-1)/2 + (x-1), because m can assume the values 1, 2, 3, ..., (x - 1) under these conditions, and the first term in the formula is a fixed positive integer when m + n is fixed. To show that this function is one-to-one and onto, we merely need to show that the range of values for x + 1 picks up precisely where the range of values for x left off, i.e., that f(x - 1, 1) + 1 = f(1, x). We have $f(x-1, 1) + 1 = \frac{(x-2)(x-1)}{2} + (x-1) + 1 = \frac{x^2 - x + 2}{2} =$ $\frac{(x-1)x}{2} + 1 = f(1, x)$. 33. By the Schröder-Bernstein theorem, it suffices to find one-to-one functions $f: (0, 1) \rightarrow [0, 1]$ and $g : [0, 1] \to (0, 1)$. Let f(x) = x and g(x) = (x + 1)/3. **35.** Each element A of the power set of the set of positive integers (i.e., $A \subseteq \mathbb{Z}^+$) can be represented uniquely by the bit string $a_1a_2a_3\ldots$, where $a_i = 1$ if $i \in A$ and $a_i = 0$ if $i \notin A$. Assume there were a one-to-one correspondence $f: \mathbb{Z}^+ \to \mathcal{P}(\mathbb{Z}^+)$. Form a new bit string $s = s_1 s_2 s_3 \dots$ by setting s_i to be 1 minus the *i*th bit of f(i). Then because *s* differs in the *i* bit from f(i), *s* is not in the range of *f*, a contradiction. **37.** For any finite alphabet there are a finite number of strings of length *n*, whenever *n* is a positive integer. It follows by the result of Exercise 27 that there are only a countable number of strings from any given finite alphabet. Because the set of all computer programs in a particular language is a subset of the set of all strings of a finite alphabet, which is a countable set by the result from Exercise 16, it is itself a countable set. **39.** Exercise 37 shows that there are only a countable number of computer programs. Consequently, there are only a countable number of computable functions. Because, as Exercise 38 shows, there are an uncountable number of functions, not all functions are computable.

Section 2.6

1. a) 3 × 4	b) $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	c) [2 0	4 6]	d) 1
$ \begin{array}{c} \mathbf{e} \end{pmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 4 & 3 \\ 3 & 6 & 7 \end{bmatrix} $	3. a) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	11 18] b)	$\begin{bmatrix} 2 & -2 \\ 1 & 0 \\ 9 & -4 \end{bmatrix}$	$\begin{bmatrix} -3\\2\\4 \end{bmatrix}$
$ \begin{array}{c} \mathbf{c} \mathbf{c} \\ -4 & 15 \\ -3 & 10 \\ 0 & 2 \\ 1 & -8 \end{array} $	$\begin{bmatrix} -4 & 1 \\ 2 & -3 \\ -8 & 6 \\ 18 & -13 \end{bmatrix}$	5. $\begin{bmatrix} 9/5 \\ -1/5 \end{bmatrix}$	$\frac{-6/5}{4/5}$	
7. $0+A = [0 + [a_{ij} + (b_{ij} + c_{ij}] + (b_{ij} + c_{ij}]$ 11. The number columns of H	$ a_{ij} = [a_{ij} + 0] $ $ a_{ij} = [(a_{ij} + b)] = [(a_{ij} + b)] $ er of rows of B , and the mean of the results of th	$\mathbf{D} = 0 + \mathbf{A}$ $i_{ij} + c_{ij} \mathbf{I}$ A equals number of B	9. $A+(B+B)$ = $(A+B)$ the number of the nu	$(\mathbf{C}) = + \mathbf{C}$ + \mathbf{C} ber of of \mathbf{A}
$\begin{bmatrix} \sum_{q} a_{iq} \left(\sum_{r} b_{q} \right) \\ \sum_{r} \sum_{q} a_{iq} b_{qr} d \end{bmatrix}$	$\begin{bmatrix} mber & of & rows\\ rc_{rl} \end{bmatrix} = \begin{bmatrix} \sum_{r} \\ r \end{bmatrix}$	$= \left[\sum_{q} \sum_{r} a_{iq} b_{qr} \right]$	$\begin{bmatrix} 15. & \mathbf{A(BC)} \\ iq b_{qr} c_{rl} \end{bmatrix} \\ c_{rl} \end{bmatrix} = 0$	= (AB)C
$15. \mathbf{A}^n = \mathbf{B} = [b_{ij}].$	$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$	(a) Let \mathbf{A} = $[a_{ij}]$	$= [a_{ij}] + b_{ij}]. $	i] and the have
$(\mathbf{A} + \mathbf{B})^{r} = [$ b) Using the sa	$a_{ji} + b_{ji} =$ me notation as	$\lfloor a_{ji} \rfloor + \lfloor l \rfloor$ in part (a),	$[p_{ji}] = \mathbf{A}^{t}$ we have \mathbf{B}^{t}	$+ \mathbf{B}^{t}$. $^{t}\mathbf{A}^{t} =$