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19. a) Both sides equal {x | x ∈ A∧x �∈ B}. b) A = A∩U =
A∩ (B ∪B) = (A∩B)∪ (A∩B) 21. x ∈ A∪ (B ∪C) ≡
(x ∈ A) ∨ (x ∈ (B ∪ C)) ≡ (x ∈ A) ∨ (x ∈ B ∨ x ∈
C) ≡ (x ∈ A ∨ x ∈ B) ∨ (x ∈ C) ≡ x ∈ (A ∪ B) ∪ C

23. x ∈ A ∪ (B ∩ C) ≡ (x ∈ A) ∨ (x ∈ (B ∩ C)) ≡
(x ∈ A) ∨ (x ∈ B ∧ x ∈ C) ≡ (x ∈ A ∨ x ∈
B) ∧ (x ∈ A ∨ x ∈ C) ≡ x ∈ (A ∪ B) ∩ (A ∪ C)

25. a) {4,6} b) {0,1,2,3,4,5,6,7,8,9,10} c) {4, 5, 6, 8, 10}
d) {0,2,4, 5,6,7,8,9,10} 27. a) The double-shaded portion
is the desired set.

A B

C

b) The desired set is the entire shaded portion.

BA

C

c) The desired set is the entire shaded portion.

A B

C

29. a) B ⊆ A b) A ⊆ B c) A ∩ B = ∅ d) Nothing, because
this is always true e) A = B 31. A ⊆ B ≡ ∀x(x ∈ A →
x ∈ B) ≡ ∀x(x �∈ B → x �∈ A) ≡ ∀x(x ∈ B → x ∈
A) ≡ B ⊆ A 33. The set of students who are computer
science majors but not mathematics majors or who are math-
ematics majors but not computer science majors 35. An
element is in (A ∪ B) − (A ∩ B) if it is in the union of A

and B but not in the intersection of A and B, which means
that it is in either A or B but not in both A and B. This is
exactly what it means for an element to belong to A ⊕ B.
37. a) A ⊕ A = (A − A) ∪ (A − A) = ∅ ∪ ∅ = ∅
b) A⊕∅ = (A−∅)∪ (∅−A) = A∪∅ = A c) A⊕U =
(A− U) ∪ (U − A) = ∅ ∪ A = A d) A⊕ A = (A− A)∪
(A − A) = A ∪ A = U 39. B = ∅ 41. Yes 43. Yes
45. IfA∪B were finite, then it would haven elements for some
natural number n. But A already has more than n elements,
because it is infinite, and A∪B has all the elements that A has,
so A∪B has more than n elements. This contradiction shows
that A ∪B must be infinite. 47. a) {1, 2, 3, . . . , n} b) {1}
49. a) An b) {0, 1} 51. a) Z, {−1, 0, 1} b) Z − {0}, ∅
c) R, [−1, 1] d) [1,∞), ∅ 53. a) {1, 2, 3, 4, 7, 8, 9, 10}
b) {2, 4, 5, 6, 7} c) {1, 10} 55. The bit in the ith position of
the bit string of the difference of two sets is 1 if the ith bit
of the first string is 1 and the ith bit of the second string is 0,
and is 0 otherwise. 57. a) 11 1110 0000 0000 0000 0000
0000 ∨ 01 1100 1000 0000 0100 0101 0000 = 11 1110 1000
0000 0100 0101 0000, representing {a, b, c, d, e, g, p, t, v}

b) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000
0100 0101 0000 = 01 1100 0000 0000 0000 0000 0000,
representing {b, c, d} c) (11 1110 0000 0000 0000 0000
0000 ∨ 00 0110 0110 0001 1000 0110 0110) ∧ (01 1100
1000 0000 0100 0101 0000 ∨ 00 1010 0010 0000 1000 0010
0111) = 11 1110 0110 0001 1000 0110 0110 ∧ 01 1110
1010 0000 1100 0111 0111= 01 1110 0010 0000 1000 0110
0110, representing {b, c, d, e, i, o, t, u, x, y} d) 11 1110
0000 0000 0000 0000 0000 ∨ 01 1100 1000 0000 0100 0101
0000 ∨ 00 1010 0010 0000 1000 0010 0111 ∨ 00 0110 0110
0001 1000 0110 0110 = 11 1110 1110 0001 1100 0111
0111, representing {a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z}
59. a) {1, 2, 3, {1, 2, 3}} b) {∅} c) {∅, {∅}} d) {∅, {∅},
{∅, {∅}}} 61. a) {3 · a, 3 · b, 1 · c, 4 · d} b) {2 · a, 2 · b}
c) {1 · a, 1 · c} d) {1 · b, 4 · d} e) {5 · a, 5 · b, 1 · c, 4 · d}
63. F = {0.4 Alice, 0.1 Brian, 0.6 Fred, 0.9 Oscar, 0.5 Rita},
R = {0.6 Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar, 0.3 Rita}
65. {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita}

Section 2.3

1. a) f (0) is not defined. b) f (x) is not defined for x < 0.
c) f (x) is not well-defined because there are two distinct
values assigned to each x. 3. a) Not a function b) A func-
tion c) Not a function 5. a) Domain the set of bit strings;
range the set of integers b) Domain the set of bit strings;
range the set of even nonnegative integers c) Domain the
set of bit strings; range the set of nonnegative integers not
exceeding 7 d) Domain the set of positive integers; range
the set of squares of positive integers = {1, 4, 9, 16, . . .}
7. a) Domain Z+×Z+; range Z+ b) Domain Z+; range
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} c) Domain the set of bit strings;
range N d) Domain the set of bit strings; range N 9. a) 1
b) 0 c) 0 d) −1 e) 3 f) −1 g) 2 h) 1 11. Only the
function in part (a) 13. Only the functions in parts (a) and
(d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto
17. a) Depends on whether teachers share offices b) One-
to-one assuming only one teacher per bus c) Most likely not
one-to-one, especially if salary is set by a collective bargain-
ing agreement d) One-to-one 19. Answers will vary. a) Set
of offices at the school; probably not onto b) Set of buses
going on the trip; onto, assuming every bus gets a teacher
chaperone c) Set of real numbers; not onto d) Set of strings
of nine digits with hyphens after third and fifth digits; not
onto 21. a) The function f (x) with f (x) = 3x + 1 when
x ≥ 0 and f (x) = −3x + 2 when x < 0 b) f (x)= |x| + 1
c) The function f (x) with f (x) = 2x + 1 when x ≥ 0 and
f (x) = −2x when x < 0 d) f (x) = x2 + 1 23. a) Yes
b) No c) Yes d) No 25. Suppose that f is strictly decreas-
ing. This means that f (x) > f (y) whenever x < y. To
show that g is strictly increasing, suppose that x < y. Then
g(x) = 1/f (x) < 1/f (y) = g(y). Conversely, suppose that g
is strictly increasing. This means that g(x) < g(y) whenever
x < y. To show that f is strictly decreasing, suppose that
x < y. Then f (x) = 1/g(x) > 1/g(y) = f (y). 27. a) Let
f be a given strictly decreasing function from R to itself. If
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a < b, then f (a) > f (b); if a > b, then f (a) < f (b).
Thus if a �= b, then f (a) �= f (b). b) Answers will vary; for
example, f (x) = 0 for x < 0 and f (x) = −x for x ≥ 0.
29. The function is not one-to-one, so it is not invertible. On
the restricted domain, the function is the identity function on
the nonnegative real numbers, f (x) = x, so it is its own in-
verse. 31. a) f (S) = {0, 1, 3} b) f (S) = {0, 1, 3, 5, 8}
c) f (S) = {0, 8, 16, 40} d) f (S) = {1, 12, 33, 65}
33. a) Let x and y be distinct elements of A. Because g is one-
to-one, g(x) and g(y) are distinct elements of B. Because f is
one-to-one, f (g(x)) = (f ◦ g)(x) and f (g(y)) = (f ◦ g)(y)

are distinct elements of C. Hence, f ◦g is one-to-one. b) Let
y ∈ C. Because f is onto, y = f (b) for some b ∈ B.
Now because g is onto, b = g(x) for some x ∈ A. Hence,
y = f (b)= f (g(x))= (f ◦g)(x). It follows that f ◦g is onto.
35. No. For example, suppose that A = {a}, B = {b, c}, and
C = {d}. Let g(a) = b, f (b) = d, and f (c) = d. Then f and
f ◦ g are onto, but g is not. 37. (f + g)(x) = x2 + x + 3,
(fg)(x) = x3 + 2x2 + x + 2 39. f is one-to-one because
f (x1) = f (x2)→ ax1 + b= ax2+b→ ax1 = ax2 → x1 =
x2. f is onto because f ((y−b)/a) = y.f−1(y)= (y− b)/a.
41. a) A = B = R, S = { x | x > 0}, T = { x | x < 0},
f (x)= x2 b) It suffices to show that f (S)∩f (T )⊆ f (S∩T ).
Let y ∈ B be an element of f (S) ∩ f (T ). Then y ∈ f (S),
so y = f (x1) for some x1 ∈ S. Similarly, y = f (x2)

for some x2 ∈ T . Because f is one-to-one, it follows that
x1 = x2. Therefore x1 ∈ S ∩ T , so y ∈ f (S ∩ T ).
43. a) {x | 0 ≤ x < 1} b) {x | −1 ≤ x < 2} c) ∅
45. f−1(S) = {x ∈ A | f (x) �∈ S} = {x ∈ A | f (x) ∈ S}
= f−1(S) 47. Let x = �x� + ε, where ε is a real number
with 0 ≤ ε < 1. If ε < 1

2 , then �x� − 1 < x − 1
2 < �x�, so

�x − 1
2� = �x� and this is the integer closest to x. If ε > 1

2 ,
then �x� < x − 1

2 < �x� + 1, so �x − 1
2� = �x� + 1 and

this is the integer closest to x. If ε = 1
2 , then �x − 1

2� = �x�,
which is the smaller of the two integers that surround x and
are the same distance from x. 49. Write the real number x

as �x�+ ε, where ε is a real number with 0 ≤ ε < 1. Because
ε = x − �x�, it follows that 0 ≤ −�x� < 1. The first two
inequalities, x−1 < �x� and �x� ≤ x, follow directly. For the
other two inequalities, write x = �x�− ε′, where 0 ≤ ε′ < 1.
Then 0 ≤ �x� − x < 1, and the desired inequality follows.
51. a) If x < n, because �x� ≤ x, it follows that �x� < n.
Suppose that x ≥ n. By the definition of the floor function, it
follows that �x� ≥ n. This means that if �x� < n, then x < n.
b) If n < x, then because x ≤ �x�, it follows that n ≤ �x�.
Suppose that n ≥ x. By the definition of the ceiling function,
it follows that �x� ≤ n. This means that if n < �x�, then
n < x. 53. If n is even, then n = 2k for some integer k.
Thus, �n/2� = �k� = k = n/2. If n is odd, then n = 2k + 1
for some integer k. Thus, �n/2� = �k+ 1

2� = k = (n− 1)/2.
55. Assume that x ≥ 0. The left-hand side is �−x� and the
right-hand side is −�x�. If x is an integer, then both sides
equal −x. Otherwise, let x = n + ε, where n is a natu-
ral number and ε is a real number with 0 ≤ ε < 1. Then
�−x� = �−n − ε� = −n and −�x� = −�n + ε� = −n

also. When x < 0, the equation also holds because it can

be obtained by substituting −x for x. 57. �b� − �a� − 1
59. a) 1 b) 3 c) 126 d) 3600 61. a) 100 b) 256 c) 1030
d) 30,200

63.

–2

–1
0–1–2 2 431

1

3

2

4

65.

–2

–1

0–1–2

1

2 31

3

2

–3

67. a) 3

2

1

–2–4 2 4

–2

–3

–1

b) 3

2

1

–2

–3

–1–2 1 2
–1

c) 3

2

1

–2

–3

–1
–6–12 –3–9 6 123 9

d)
3

2

1

4

–2

–3

–1–1 1

e)
3

2

1

4

–2

–3

–4

–1
–2 –1 21

f)

3

2

1

4

5

–2 –1 1 2

–2

–3

–1

–4

g) See part (a). 69. f−1(y) = (y−1)1/3 71. a) fA∩B(x) =
1 ↔ x ∈ A ∩ B ↔ x ∈ A and x ∈ B ↔ fA(x) = 1 and
fB(x) = 1 ↔ fA(x)fB(x) = 1 b) fA∪B(x) = 1 ↔ x ∈
A ∪ B ↔ x ∈ A or x ∈ B ↔ fA(x) = 1
or fB(x) = 1 ↔ fA(x) + fB(x) − fA(x)fB(x) = 1
c) fA(x)= 1↔ x ∈A↔ x �∈A↔ fA(x)= 0↔ 1−fA(x) =
1 d) fA⊕B(x) = 1 ↔ x ∈ A⊕ B ↔ (x ∈ A and x �∈ B) or
(x �∈ A and x ∈ B) ↔ fA(x) + fB(x) − 2fA(x)fB(x) = 1
73. a) True; because �x� is already an integer, ��x�� = �x�.
b) False; x = 1

2 is a counterexample. c) True; if x or y is an
integer, then by property 4b in Table 1, the difference is 0. If
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neither x nor y is an integer, then x = n+ ε and y = m+ δ,
where n and m are integers and ε and δ are positive real num-
bers less than 1. Then m + n < x + y < m + n + 2, so
�x+y� is either m+n+1 or m+n+2. Therefore, the given
expression is either (n+ 1)+ (m+ 1)− (m+ n+ 1) = 1 or
(n+ 1)+ (m+ 1)− (m+ n+ 2) = 0, as desired. d) False;
x = 1

4 and y = 3 is a counterexample. e) False; x = 1
2 is

a counterexample. 75. a) If x is a positive integer, then the
two sides are equal. So suppose that x = n2 +m+ ε, where
n2 is the largest perfect square less than x, m is a nonnegative
integer, and 0 < ε ≤ 1. Then both

√
x and

√�x� = √n2 +m

are between n and n + 1, so both sides equal n. b) If x is a
positive integer, then the two sides are equal. So suppose that
x = n2 − m − ε, where n2 is the smallest perfect square
greater than x, m is a nonnegative integer, and ε is a real num-
ber with 0 < ε ≤ 1. Then both

√
x and

√�x� = √
n2 −m

are between n − 1 and n. Therefore, both sides of the equa-
tion equal n. 77. a) Domain is Z; codomain is R; domain of
definition is the set of nonzero integers; the set of values for
which f is undefined is {0}; not a total function. b) Domain
is Z; codomain is Z; domain of definition is Z; set of values
for which f is undefined is ∅; total function. c) Domain is
Z×Z; codomain is Q; domain of definition is Z× (Z−{0});
set of values for which f is undefined is Z × {0}; not a total
function. d) Domain is Z × Z; codomain is Z; domain of
definition is Z × Z; set of values for which f is undefined
is ∅; total function. e) Domain is Z × Z; codomain is Z;
domain of definitions is {(m, n) | m > n}; set of values
for which f is undefined is {(m, n) | m ≤ n}; not a total
function. 79. a) By definition, to say that S has cardinality
m is to say that S has exactly m distinct elements. Therefore
we can assign the first object to 1, the second to 2, and so on.
This provides the one-to-one correspondence. b) By part (a),
there is a bijection f from S to {1, 2, . . . , m} and a bijection
g from T to {1, 2, . . . , m}. Then the composition g−1 ◦ f is
the desired bijection from S to T .

Section 2.4

1. a) 3 b) −1 c) 787 d) 2639 3. a) a0 = 2, a1 = 3,

a2 = 5, a3 = 9 b) a0 = 1, a1 = 4, a2 = 27, a3 = 256
c) a0 = 0, a1 = 0, a2 = 1, a3 = 1 d) a0 = 0, a1 = 1,
a2 = 2, a3 = 3 5. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29
b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9
d) −1, −2, −2, 8, 88, 656, 4912, 40064, 362368,
3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536
f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 g) 1, 2, 2, 3, 3, 3, 3, 4,

4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be
twice the previous term; the nth term could be obtained from
the previous term by adding n − 1; the terms could be the
positive integers that are not multiples of 3; there are in-
finitely many other possibilities. 9. a) 2, 12, 72, 432, 2592
b) 2, 4, 16, 256, 65,536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204
e) 1, 2, 0, 1, 3 11. a) 6, 17, 49, 143, 421 b) 49 =
5 · 17 − 6 · 6, 143 = 5 · 49 − 6 · 17, 421 =
5 · 143 − 6 · 49 c) 5an−1 − 6an−2 =5(2n−1 + 5 ·

3n−1) − 6(2n−2 + 5 · 3n−2) = 2n−2(10 − 6) +
3n−2(75− 30) = 2n−2 · 4 + 3n−2 · 9 · 5 = 2n + 3n · 5 = an

13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No h) No
15. a) an−1 + 2an−2 + 2n − 9 = −(n − 1) + 2 + 2
[−(n − 2) + 2] + 2n − 9 = −n +2 = an b) an−1 +
2an−2+ 2n− 9 = 5(−1)n−1 − (n− 1)+ 2+ 2[5(−1)n−2−
(n− 2)+ 2] + 2n− 9= 5(−1)n − 2(−1+ 2)− n+ 2 = an

c) an−1+ 2an−2+ 2n−9= 3(−1)n−1+2n−1− (n−1)+ 2+
2[3(−1)n−2 + 2n−2 − (n− 2) + 2] + 2n− 9 = 3(−1)n−2

(−1 + 2) + 2n−2 (2 + 2) − n + 2 = an d) an−1 +
2an−2 + 2n− 9 = 7 · 2n−1 − (n− 1) + 2 + 2[7 · 2n−2−
(n − 2) + 2] + 2n− 9 = 2n−2(7 · 2+ 2 · 7)−n + 2 = an

17. a) an = 2 · 3n b) an = 2n+ 3 c) an = 1+ n(n+ 1)/2
d) an = n2 + 4n + 4 e) an = 1 f) an = (3n+1 − 1)/2
g) an = 5n! h) an = 2nn! 19. a) an= 3an−1 b) 5,904,900
21. a) an = n + an−1, a0 = 0 b) a12 = 78
c) an = n(n+ 1)/2 23. B(k) = [1+ (0.07/12)]B(k− 1)−
100, with B(0) = 5000 25. a) One 1 and one 0, followed
by two 1s and two 0s, followed by three 1s and three 0s,
and so on; 1, 1, 1 b) The positive integers are listed in in-
creasing order with each even positive integer listed twice;
9, 10, 10. c) The terms in odd-numbered locations are the
successive powers of 2; the terms in even-numbered loca-
tions are all 0; 32, 0, 64. d) an = 3 · 2n−1; 384, 768, 1536
e) an = 15 − 7(n − 1) = 22 − 7n; −34, −41, −48
f) an = (n2 + n + 4)/2; 57, 68, 80 g) an = 2n3;
1024, 1458, 2000 h) an = n! + 1; 362881, 3628801,
39916801 27. Among the integers 1, 2, . . . , an, where an

is the nth positive integer not a perfect square, the nonsquares
are a1,a2, . . . ,an and the squares are 12,22, . . . ,k2, where k

is the integer with k2 < n + k < (k + 1)2. Consequently,
an = n + k, where k2 < an < (k + 1)2. To find k, first note
that k2 < n+ k < (k + 1)2, so k2+1 ≤ n+k ≤ (k+1)2−1.
Hence, (k− 1

2 )2+ 3
4 = k2−k+1 ≤ n ≤ k2+k = (k+ 1

2 )2− 1
4 .

It follows that k − 1
2 <

√
n < k + 1

2 , so k = {√n}
and an = n + k = n + {√n}. 29. a) 20 b) 11 c) 30
d) 511 31. a) 1533 b) 510 c) 4923 d) 9842 33. a) 21
b) 78 c) 18 d) 18 35.

∑n
j=1(aj − aj−1) = an − a0

37. a) n2 b) n(n + 1)/2 39. 15150 41. n(n+1)(2n+1)
3 +

n(n+1)
2 + (n+ 1)(m − (n + 1)2 + 1), where n = �√m� − 1

43. a) 0 b) 1680 c) 1 d) 1024 45. 34

Section 2.5

1. a) Countably infinite, −1,−2,−3, −4, . . . b) Countably
infinite, 0, 2, −2, 4, −4, . . . c) Countably infinite,
99, 98, 97, . . . d) Uncountable e) Finite f) Countably infi-
nite, 0, 7,−7, 14,−14, . . . 3. a) Countable: match n with
the string of n 1s. b) Countable. To find a correspondence,
follow the path in Example 4, but omit fractions in the top
three rows (as well as continuing to omit fractions not in low-
est terms). c) Uncountable d) Uncountable 5. Suppose m

new guests arrive at the fully occupied hotel. Move the guest
in Room n to Room m + n for n = 1, 2, 3, . . .; then the new
guests can occupy rooms 1 to m. 7. For n = 1, 2, 3, . . ., put
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the guest currently in Room 2n into Room n, and the guest
currently in Room 2n − 1 into Room n of the new build-
ing. 9. Move the guess currently Room i to Room 2i + 1
for i = 1, 2, 3, . . .. Put the j th guest from the kth bus into
Room 2k(2j + 1). 11. a) A = [1, 2] (closed interval of
real numbers from 1 to 2), B = [3, 4] b) A = [1, 2] ∪ Z+,
B = [3, 4]∪Z+ c) A = [1, 3], B = [2, 4] 13. Suppose that
A is countable. Then either A has cardinality n for some non-
negative integer n, in which case there is a one-to-one function
from A to a subset of Z+ (the range is the first n positive in-
tegers), or there exists a one-to-one correspondence f from
A to Z+; in either case we have satisfied Definition 2. Con-
versely, suppose that |A| ≤ |Z+|. By definition, this means
that there is a one-to-one function from A to Z+, so A has the
same cardinality as a subset of Z+ (namely the range of that
function). By Exercise 16 we conclude that A is countable.
15. Assume that B is countable. Then the elements of B can
be listed as b1, b2, b3, . . . . Because A is a subset of B, taking
the subsequence of {bn} that contains the terms that are in A

gives a listing of the elements of A. Because A is uncount-
able, this is impossible. 17. Assume that A−B is countable.
Then, because A = (A − B) ∪ (A ∩ B), the elements of A

can be listed in a sequence by alternating elements of A− B

and elements of A∩B. This contradicts the uncountability of
A. 19. We are given bijections f from A to B and g from
C to D. Then the function from A × C to B × D that sends
(a, c) to (f (a), g(c)) is a bijection. 21. By the definition
of |A| ≤ |B|, there is a one-to-one function f : A→ B. Simi-
larly, there is a one-to-one function g : B → C. By Exercise 33
in Section 2.3, the composition g ◦ f : A→ C is one-to-one.
Therefore by definition |A| ≤ |C|. 23. Using the Axiom of
Choice from set theory, choose distinct elements a1, a2, a3,
…of A one at a time (this is possible because A is infinite). The
resulting set {a1, a2, a3, . . .} is the desired infinite subset of A.
25. The set of finite strings of characters over a finite alphabet
is countably infinite, because we can list these strings in al-
phabetical order by length. Therefore the infinite set S can be
identified with an infinite subset of this countable set, which
by Exercise 16 is also countably infinite. 27. Suppose that
A1, A2, A3, . . . are countable sets. Because Ai is countable,
we can list its elements in a sequence as ai1, ai2, ai3, . . . . The
elements of the set

⋃n
i=1 Ai can be listed by listing all terms

aij with i + j = 2, then all terms aij with i + j = 3, then
all terms aij with i + j = 4, and so on. 29. There are a
finite number of bit strings of length m, namely, 2m. The set
of all bit, strings is the union of the sets of bit strings of length
m for m = 0, 1, 2, . . . . Because the union of a countable
number of countable sets is countable (see Exercise 27), there
are a countable number of bit strings. 31. It is clear from
the formula that the range of values the function takes on for a
fixed value of m+ n, say m+ n = x, is (x − 2)(x − 1)/2+ 1
through (x − 2)(x − 1)/2+ (x − 1), because m can assume
the values 1, 2, 3, . . . , (x − 1) under these conditions, and
the first term in the formula is a fixed positive integer when
m + n is fixed. To show that this function is one-to-one and
onto, we merely need to show that the range of values for

x + 1 picks up precisely where the range of values for x

left off, i.e., that f (x − 1, 1) + 1 = f (1, x). We have
f (x−1, 1)+1 = (x−2)(x− 1)

2 + (x−1)+1 = x2 − x+ 2
2 =

(x− 1)x
2 +1 = f (1, x). 33. By the Schröder-Bernstein theo-

rem, it suffices to find one-to-one functions f : (0, 1)→ [0, 1]
and g : [0, 1] → (0, 1). Let f (x) = x and g(x) = (x + 1)/3.
35. Each element A of the power set of the set of positive
integers (i.e., A ⊆ Z+) can be represented uniquely by the
bit string a1a2a3 . . ., where ai = 1 if i ∈ A and ai = 0
if i /∈ A. Assume there were a one-to-one correspondence
f : Z+ → P(Z+). Form a new bit string s = s1s2s3 . . . by set-
ting si to be 1 minus the ith bit of f (i). Then because s differs
in the i bit from f (i), s is not in the range of f , a contradiction.
37. For any finite alphabet there are a finite number of strings
of length n, whenever n is a positive integer. It follows by the
result of Exercise 27 that there are only a countable number
of strings from any given finite alphabet. Because the set of
all computer programs in a particular language is a subset of
the set of all strings of a finite alphabet, which is a countable
set by the result from Exercise 16, it is itself a countable set.
39. Exercise 37 shows that there are only a countable number
of computer programs. Consequently, there are only a count-
able number of computable functions. Because, as Exercise
38 shows, there are an uncountable number of functions, not
all functions are computable.

Section 2.6

1. a) 3× 4 b)

⎡
⎣

1
4
3

⎤
⎦ c)

[
2 0 4 6

]
d) 1

e)
⎡
⎢⎢⎣

1 2 1
1 0 1
1 4 3
3 6 7

⎤
⎥⎥⎦

3. a)
[

1 11
2 18

]
b)
⎡
⎣

2 −2 −3
1 0 2
9 −4 4

⎤
⎦

c)
⎡
⎢⎢⎣

−4 15 −4 1
−3 10 2 −3
0 2 −8 6
1 −8 18 −13

⎤
⎥⎥⎦

5. [ 9/5 −6/5
−1/5 4/5

]

7. 0+A= [0+ aij

]= [aij + 0
]= 0+A 9. A+(B+C)=[

aij + (bij + cij )
] = [

(aij + bij ) + cij

] = (A+B) + C
11. The number of rows of A equals the number of
columns of B, and the number of columns of A
equals the number of rows of B. 13. A(BC) =[∑

qaiq

(∑
rbqrcrl

)] =
[∑

q

∑
raiqbqrcrl

]
=[∑

r

∑
qaiqbqrcrl

]
=

[∑
r

(∑
qaiqbqr

)
crl

]
= (AB)C

15. An =
[

1 n
0 1

]
17. a) Let A = [aij ] and

B = [bij ]. Then A + B = [aij + bij ]. We have
(A + B)t = [aji + bji] = [aji] + [bji] = At + Bt .
b) Using the same notation as in part (a), we have BtAt =


