19. a) Both sides equal $\{x \mid x \in A \wedge x \notin B\}$. b) $A=A \cap U=$ $A \cap(B \cup \bar{B})=(A \cap B) \cup(A \cap \bar{B}) \quad$ 21. $x \in A \cup(B \cup C) \equiv$ $(x \in A) \vee(x \in(B \cup C)) \equiv(x \in A) \vee(x \in B \vee x \in$ $C) \equiv(x \in A \vee x \in B) \vee(x \in C) \equiv x \in(A \cup B) \cup C$ 23. $x \in A \cup(B \cap C) \equiv(x \in A) \vee(x \in(B \cap C)) \equiv$ $(x \in A) \vee(x \in B \wedge x \in C) \equiv(x \in A \vee x \in$ B) $\wedge(x \in A \vee x \in C) \equiv x \in(A \cup B) \cap(A \cup C)$ 25. а) $\{4,6\} \quad$ b) $\{0,1,2,3,4,5,6,7,8,9,10\}$ c) $\{4,5,6,8,10\}$ $\begin{array}{ll}\text { d) }\{0,2,4,5,6,7,8,9,10\} & 27 \text {. a) The double-shaded portion }\end{array}$ is the desired set.

b) The desired set is the entire shaded portion.

c) The desired set is the entire shaded portion.

20. a) $B \subseteq A$ b) $A \subseteq B$ c) $A \cap B=\emptyset$ d) Nothing, because this is always true e) $A=B \quad$ 31. $A \subseteq B \equiv \forall x(x \in A \rightarrow$ $x \in B) \equiv \forall x(x \notin B \rightarrow x \notin A) \equiv \forall x(x \in \bar{B} \rightarrow x \in$ $\bar{A}) \equiv \bar{B} \subseteq \bar{A} \quad 33$. The set of students who are computer science majors but not mathematics majors or who are mathematics majors but not computer science majors 35. An element is in $(A \cup B)-(A \cap B)$ if it is in the union of A and B but not in the intersection of A and B, which means that it is in either A or B but not in both A and B. This is exactly what it means for an element to belong to $A \oplus B$. 37. a) $A \oplus A=(A-A) \cup(A-A)=\emptyset \cup \emptyset=\emptyset$ b) $A \oplus \emptyset=(A-\emptyset) \cup(\emptyset-A)=A \cup \emptyset=A$ c) $A \oplus U=$ $(A-U) \cup(U-A)=\emptyset \cup \bar{A}=\bar{A}$ d) $A \oplus \bar{A}=(A-\bar{A}) \cup$ $(\bar{A}-A)=A \cup \bar{A}=U \quad$ 39. $B=\emptyset \quad$ 41. Yes 43 . Yes 45. If $A \cup B$ were finite, then it would have n elements for some natural number n. But A already has more than n elements, because it is infinite, and $A \cup B$ has all the elements that A has, so $A \cup B$ has more than n elements. This contradiction shows that $A \cup B$ must be infinite. 47. a) $\{1,2,3, \ldots, n\}$ b) $\{1\}$ $\begin{array}{llll}\text { 49. a) } A_{n} & \text { b) }\{0,1\} & \text { 51. a) } \mathbf{Z},\{-1,0,1\} & \text { b) } \mathbf{Z}-\{0\} \text {, Ø }\end{array}$ c) $\mathbf{R},[-1,1] \quad$ d) $[1, \infty)$, Ø \quad 53. a) $\{1,2,3,4,7,8,9,10\}$ b) $\{2,4,5,6,7\}$ c) $\{1,10\} \quad$ 55. The bit in the i th position of the bit string of the difference of two sets is 1 if the i th bit of the first string is 1 and the i th bit of the second string is 0 , and is 0 otherwise. 57. a) 1111100000000000000000 $0000 \vee 01110010000000010001010000=1111101000$ 0000010001010000 , representing $\{a, b, c, d, e, g, p, t, v\}$
b) $11111000000000000000000000 \wedge 01110010000000$ $010001010000=01110000000000000000000000$, representing $\{b, c, d\} \quad$ c) $(1111100000000000000000$ $0000 \vee 00011001100001100001100110) \wedge(011100$ $10000000010001010000 \vee 0010100010000010000010$ 0111) $=11111001100001100001100110 \wedge 011110$ $10100000110001110111=0111100010000010000110$ 0110, representing $\{b, c, d, e, i, o, t, u, x, y\} \quad$ d) 111110 $00000000000000000000 \vee 0111001000000001000101$ $0000 \vee 00101000100000100000100111 \vee 0001100110$ $0001100001100110=1111101110000111000111$ 0111, representing $\{a, b, c, d, e, g, h, i, n, o, p, t, u, v, x, y, z\}$ 59. a) $\{1,2,3,\{1,2,3\}\}$ b) $\{\emptyset\} \quad$ c) $\{\emptyset,\{\emptyset\}\}$ d) $\{\emptyset,\{\emptyset\}$, $\{\emptyset,\{\emptyset\}\}\}$ 61. a) $\{3 \cdot a, 3 \cdot b, 1 \cdot c, 4 \cdot d\}$ b) $\{2 \cdot a, 2 \cdot b\}$ c) $\{1 \cdot a, 1 \cdot c\}$ d) $\{1 \cdot b, 4 \cdot d\}$ e) $\{5 \cdot a, 5 \cdot b, 1 \cdot c, 4 \cdot d\}$ 63. $\bar{F}=\{0.4$ Alice, 0.1 Brian, 0.6 Fred, 0.9 Oscar, 0.5 Rita $\}$, $\bar{R}=\{0.6$ Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar, 0.3 Rita $\}$ 65. \{0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita\}

Section 2.3

1. a) $f(0)$ is not defined. b) $f(x)$ is not defined for $x<0$. c) $f(x)$ is not well-defined because there are two distinct values assigned to each x. 3. a) Not a function b) A function c) Not a function \quad 5. a) Domain the set of bit strings; range the set of integers b) Domain the set of bit strings; range the set of even nonnegative integers c) Domain the set of bit strings; range the set of nonnegative integers not exceeding 7 d) Domain the set of positive integers; range the set of squares of positive integers $=\{1,4,9,16, \ldots\}$ 7. a) Domain $\mathbf{Z}^{+} \times \mathbf{Z}^{+}$; range $\left.\mathbf{Z}^{+} \mathbf{b}\right)$ Domain \mathbf{Z}^{+}; range $\{0,1,2,3,4,5,6,7,8,9\} \quad$ c) Domain the set of bit strings; $\begin{array}{lll}\text { range } \mathbf{N} & \mathbf{d}) \text { Domain the set of bit strings; range } \mathbf{N} & 9 . \\ \text { a) }\end{array} 1$ $\begin{array}{lllllll}\text { b) } 0 & \text { c) } 0 & \text { d) }-1 & \text { e) } 3 & \text { f) }-1 & \text { g) } 2 & \text { h) } 1\end{array} \quad \mathbf{1 1}$. Only the function in part (a) 13. Only the functions in parts (a) and (d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto 17. a) Depends on whether teachers share offices b) One-to-one assuming only one teacher per bus c) Most likely not one-to-one, especially if salary is set by a collective bargaining agreement d) One-to-one 19. Answers will vary. a) Set of offices at the school; probably not onto b) Set of buses going on the trip; onto, assuming every bus gets a teacher chaperone c) Set of real numbers; not onto d) Set of strings of nine digits with hyphens after third and fifth digits; not onto 21. a) The function $f(x)$ with $f(x)=3 x+1$ when $x \geq 0$ and $f(x)=-3 x+2$ when $x<0$ b) $f(x)=|x|+1$ c) The function $f(x)$ with $f(x)=2 x+1$ when $x \geq 0$ and $f(x)=-2 x$ when $x<0 \quad$ d) $f(x)=x^{2}+1 \quad$ 23. a) Yes b) No c) Yes d) No 25 . Suppose that f is strictly decreasing. This means that $f(x)>f(y)$ whenever $x<y$. To show that g is strictly increasing, suppose that $x<y$. Then $g(x)=1 / f(x)<1 / f(y)=g(y)$. Conversely, suppose that g is strictly increasing. This means that $g(x)<g(y)$ whenever $x<y$. To show that f is strictly decreasing, suppose that $x<y$. Then $f(x)=1 / g(x)>1 / g(y)=f(y)$. 27. a) Let f be a given strictly decreasing function from \mathbf{R} to itself. If
$a<b$, then $f(a)>f(b)$; if $a>b$, then $f(a)<f(b)$. Thus if $a \neq b$, then $f(a) \neq f(b)$. b) Answers will vary; for example, $f(x)=0$ for $x<0$ and $f(x)=-x$ for $x \geq 0$. 29. The function is not one-to-one, so it is not invertible. On the restricted domain, the function is the identity function on the nonnegative real numbers, $f(x)=x$, so it is its own inverse. 31. a) $f(S)=\{0,1,3\}$ b) $f(S)=\{0,1,3,5,8\}$ c) $f(S)=\{0,8,16,40\} \quad$ d) $f(S)=\{1,12,33,65\}$ 33. a) Let x and y be distinct elements of A. Because g is one-to-one, $g(x)$ and $g(y)$ are distinct elements of B. Because f is one-to-one, $f(g(x))=(f \circ g)(x)$ and $f(g(y))=(f \circ g)(y)$ are distinct elements of C. Hence, $f \circ g$ is one-to-one. b) Let $y \in C$. Because f is onto, $y=f(b)$ for some $b \in B$. Now because g is onto, $b=g(x)$ for some $x \in A$. Hence, $y=f(b)=f(g(x))=(f \circ g)(x)$. It follows that $f \circ g$ is onto. 35. No. For example, suppose that $A=\{a\}, B=\{b, c\}$, and $C=\{d\}$. Let $g(a)=b, f(b)=d$, and $f(c)=d$. Then f and $f \circ g$ are onto, but g is not. 37. $(f+g)(x)=x^{2}+x+3$, $(f g)(x)=x^{3}+2 x^{2}+x+2 \quad$ 39. f is one-to-one because $f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow a x_{1}+b=a x_{2}+b \rightarrow a x_{1}=a x_{2} \rightarrow x_{1}=$ $x_{2} . f$ is onto because $f((y-b) / a)=y . f^{-1}(y)=(y-b) / a$. 41. a) $A=B=\mathbf{R}, S=\{x \mid x>0\}, T=\{x \mid x<0\}$, $\left.f(x)=x^{2} \mathbf{b}\right)$ It suffices to show that $f(S) \cap f(T) \subseteq f(S \cap T)$. Let $y \in B$ be an element of $f(S) \cap f(T)$. Then $y \in f(S)$, so $y=f\left(x_{1}\right)$ for some $x_{1} \in S$. Similarly, $y=f\left(x_{2}\right)$ for some $x_{2} \in T$. Because f is one-to-one, it follows that $x_{1}=x_{2}$. Therefore $x_{1} \in S \cap T$, so $y \in f(S \cap T)$. 43. a) $\{x \mid 0 \leq x<1\}$ b) $\{x \mid-1 \leq x<2\}$ c) \emptyset 45. $f^{-1}(\bar{S})=\{x \in A \mid f(x) \notin S\}=\overline{\{x \in A \mid f(x) \in S\}}$ $=\overline{f^{-1}(S)}$ 47. Let $x=\lfloor x\rfloor+\epsilon$, where ϵ is a real number with $0 \leq \epsilon<1$. If $\epsilon<\frac{1}{2}$, then $\lfloor x\rfloor-1<x-\frac{1}{2}<\lfloor x\rfloor$, so $\left\lceil x-\frac{1}{2}\right\rceil=\lfloor x\rfloor$ and this is the integer closest to x. If $\epsilon>\frac{1}{2}$, then $\lfloor x\rfloor<x-\frac{1}{2}<\lfloor x\rfloor+1$, so $\left\lceil x-\frac{1}{2}\right\rceil=\lfloor x\rfloor+1$ and this is the integer closest to x. If $\epsilon=\frac{1}{2}$, then $\left\lceil x-\frac{1}{2}\right\rceil=\lfloor x\rfloor$, which is the smaller of the two integers that surround x and are the same distance from x. 49. Write the real number x as $\lfloor x\rfloor+\epsilon$, where ϵ is a real number with $0 \leq \epsilon<1$. Because $\epsilon=x-\lfloor x\rfloor$, it follows that $0 \leq-\lfloor x\rfloor<1$. The first two inequalities, $x-1<\lfloor x\rfloor$ and $\lfloor x\rfloor \leq x$, follow directly. For the other two inequalities, write $x=\lceil x\rceil-\epsilon^{\prime}$, where $0 \leq \epsilon^{\prime}<1$. Then $0 \leq\lceil x\rceil-x<1$, and the desired inequality follows. 51. a) If $x<n$, because $\lfloor x\rfloor \leq x$, it follows that $\lfloor x\rfloor<n$. Suppose that $x \geq n$. By the definition of the floor function, it follows that $\lfloor x\rfloor \geq n$. This means that if $\lfloor x\rfloor<n$, then $x<n$. b) If $n<x$, then because $x \leq\lceil x\rceil$, it follows that $n \leq\lceil x\rceil$. Suppose that $n \geq x$. By the definition of the ceiling function, it follows that $\lceil x\rceil \leq n$. This means that if $n<\lceil x\rceil$, then $n<x$. 53. If n is even, then $n=2 k$ for some integer k. Thus, $\lfloor n / 2\rfloor=\lfloor k\rfloor=k=n / 2$. If n is odd, then $n=2 k+1$ for some integer k. Thus, $\lfloor n / 2\rfloor=\left\lfloor k+\frac{1}{2}\right\rfloor=k=(n-1) / 2$. 55. Assume that $x \geq 0$. The left-hand side is $\lceil-x\rceil$ and the right-hand side is $-\lfloor x\rfloor$. If x is an integer, then both sides equal $-x$. Otherwise, let $x=n+\epsilon$, where n is a natural number and ϵ is a real number with $0 \leq \epsilon<1$. Then $\lceil-x\rceil=\lceil-n-\epsilon\rceil=-n$ and $-\lfloor x\rfloor=-\lfloor n+\epsilon\rfloor=-n$ also. When $x<0$, the equation also holds because it can
be obtained by substituting $-x$ for x. 57. $\lceil b\rceil-\lfloor a\rfloor-1$ $\begin{array}{lllllll}59 . ~ a) ~ & \text { b) } 3 & \text { c) } 126 & \text { d) } 3600 & \text { 61. a) } 100 & \text { b) } 256 & \text { c) } 1030\end{array}$ d) 30,200
2.

65.

67. a)

b)

c)

d)

e)

g) See part (a). 69. $f^{-1}(y)=(y-1)^{1 / 3}$ 71. a) $f_{A \cap B}(x)=$ $1 \leftrightarrow x \in A \cap B \leftrightarrow x \in A$ and $x \in B \leftrightarrow f_{A}(x)=1$ and $f_{B}(x)=1 \leftrightarrow f_{A}(x) f_{B}(x)=1$ b) $f_{A \cup B}(x)=1 \leftrightarrow x \in$ $A \cup B \leftrightarrow x \in A$ or $x \in B \leftrightarrow f_{A}(x)=1$ or $f_{B}(x)=1 \leftrightarrow f_{A}(x)+f_{B}(x)-f_{A}(x) f_{B}(x)=1$ c) $f_{\bar{A}}(x)=1 \leftrightarrow x \in \bar{A} \leftrightarrow x \notin A \leftrightarrow f_{A}(x)=0 \leftrightarrow 1-f_{A}(x)=$ 1 d) $f_{A \oplus B}(x)=1 \leftrightarrow x \in A \oplus B \leftrightarrow(x \in A$ and $x \notin B)$ or $(x \notin A$ and $x \in B) \leftrightarrow f_{A}(x)+f_{B}(x)-2 f_{A}(x) f_{B}(x)=1$ 73. a) True; because $\lfloor x\rfloor$ is already an integer, $\lceil\lfloor x\rfloor\rceil=\lfloor x\rfloor$. b) False; $x=\frac{1}{2}$ is a counterexample. c) True; if x or y is an integer, then by property 4 b in Table 1, the difference is 0 . If
neither x nor y is an integer, then $x=n+\epsilon$ and $y=m+\delta$, where n and m are integers and ϵ and δ are positive real numbers less than 1 . Then $m+n<x+y<m+n+2$, so $\lceil x+y\rceil$ is either $m+n+1$ or $m+n+2$. Therefore, the given expression is either $(n+1)+(m+1)-(m+n+1)=1$ or $(n+1)+(m+1)-(m+n+2)=0$, as desired. d) False; $x=\frac{1}{4}$ and $y=3$ is a counterexample. e) False; $x=\frac{1}{2}$ is a counterexample. 75. a) If x is a positive integer, then the two sides are equal. So suppose that $x=n^{2}+m+\epsilon$, where n^{2} is the largest perfect square less than x, m is a nonnegative integer, and $0<\epsilon \leq 1$. Then both \sqrt{x} and $\sqrt{\lfloor x\rfloor}=\sqrt{n^{2}+m}$ are between n and $n+1$, so both sides equal n. b) If x is a positive integer, then the two sides are equal. So suppose that $x=n^{2}-m-\epsilon$, where n^{2} is the smallest perfect square greater than x, m is a nonnegative integer, and ϵ is a real number with $0<\epsilon \leq 1$. Then both \sqrt{x} and $\sqrt{\lceil x\rceil}=\sqrt{n^{2}-m}$ are between $n-1$ and n. Therefore, both sides of the equation equal n. 77. a) Domain is \mathbf{Z}; codomain is \mathbf{R}; domain of definition is the set of nonzero integers; the set of values for which f is undefined is $\{0\}$; not a total function. b) Domain is \mathbf{Z}; codomain is \mathbf{Z}; domain of definition is \mathbf{Z}; set of values for which f is undefined is \emptyset; total function. c) Domain is $\mathbf{Z} \times \mathbf{Z}$; codomain is \mathbf{Q}; domain of definition is $\mathbf{Z} \times(\mathbf{Z}-\{0\})$; set of values for which f is undefined is $\mathbf{Z} \times\{0\}$; not a total function. d) Domain is $\mathbf{Z} \times \mathbf{Z}$; codomain is \mathbf{Z}; domain of definition is $\mathbf{Z} \times \mathbf{Z}$; set of values for which f is undefined is \emptyset; total function. e) Domain is $\mathbf{Z} \times \mathbf{Z}$; codomain is \mathbf{Z}; domain of definitions is $\{(m, n) \mid m>n\}$; set of values for which f is undefined is $\{(m, n) \mid m \leq n\}$; not a total function. 79. a) By definition, to say that S has cardinality m is to say that S has exactly m distinct elements. Therefore we can assign the first object to 1 , the second to 2 , and so on. This provides the one-to-one correspondence. b) By part (a), there is a bijection f from S to $\{1,2, \ldots, m\}$ and a bijection g from T to $\{1,2, \ldots, m\}$. Then the composition $g^{-1} \circ f$ is the desired bijection from S to T.

Section 2.4

$\begin{array}{lllll}\text { 1. a) } 3 & \text { b) }-1 & \text { c) } 787 & \text { d) } 2639 & \text { 3. a) } a_{0}=2, a_{1}=3 \text {, }\end{array}$ $a_{2}=5, a_{3}=9 \quad$ b) $a_{0}=1, a_{1}=4, a_{2}=27, a_{3}=256$ c) $a_{0}=0, a_{1}=0, a_{2}=1, a_{3}=1 \quad$ d) $a_{0}=0, a_{1}=1$, $a_{2}=2, a_{3}=3 \quad$ 5. a) $2,5,8,11,14,17,20,23,26,29$ b) $1,1,1,2,2,2,3,3,3,4$ c) $1,1,3,3,5,5,7,7,9,9$ d) $-1,-2,-2,8,88,656,4912,40064,362368$, 3627776 e) $3,6,12,24,48,96,192,384,768,1536$ f) $2,4,6,10,16,26,42,68,110,178$ g) $1,2,2,3,3,3,3,4$, 4,4 h) $3,3,5,4,4,3,5,5,4,3$ 7. Each term could be twice the previous term; the nth term could be obtained from the previous term by adding $n-1$; the terms could be the positive integers that are not multiples of 3 ; there are infinitely many other possibilities. 9. a) $2,12,72,432,2592$ b) $2,4,16,256,65,536$ c) $1,2,5,11,26$ d) $1,1,6,27,204$ e) $1,2,0,1,3 \quad 11$. a) $6,17,49,143,421$
b) $49=$ $5 \cdot 17-6 \cdot 6,143=5 \cdot 49-6 \cdot 17,421=$ $5 \cdot 143-6 \cdot 49 \quad$ c) $5 a_{n-1}-6 a_{n-2}=5\left(2^{n-1}+5\right.$.
$\left.3^{n-1}\right)-6\left(2^{n-2}+5 \cdot 3^{n-2}\right)=2^{n-2}(10-6)+$ $3^{n-2}(75-30)=2^{n-2} \cdot 4+3^{n-2} \cdot 9 \cdot 5=2^{n}+3^{n} \cdot 5=a_{n}$ 13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No h) No 15. a) $a_{n-1}+2 a_{n-2}+2 n-9=-(n-1)+2+2$ $[-(n-2)+2]+2 n-9=-n+2=a_{n}$ b) $a_{n-1}+$ $2 a_{n-2}+2 n-9=5(-1)^{n-1}-(n-1)+2+2\left[5(-1)^{n-2}-\right.$ $(n-2)+2]+2 n-9=5(-1)^{n-2}(-1+2)-n+2=a_{n}$ c) $a_{n-1}+2 a_{n-2}+2 n-9=3(-1)^{n-1}+2^{n-1}-(n-1)+2+$ $2\left[3(-1)^{n-2}+2^{n-2}-(n-2)+2\right]+2 n-9=3(-1)^{n-2}$ $(-1+2)+2^{n-2}(2+2)-n+2=a_{n}$ d) $a_{n-1}+$ $2 a_{n-2}+2 n-9=7 \cdot 2^{n-1}-(n-1)+2+2\left[7 \cdot 2^{n-2}-\right.$ $(n-2)+2]+2 n-9=2^{n-2}(7 \cdot 2+2 \cdot 7)-n+2=a_{n}$ 17. a) $a_{n}=2 \cdot 3^{n} \quad$ b) $a_{n}=2 n+3$ c) $a_{n}=1+n(n+1) / 2$ $\begin{array}{lll}\text { d) } a_{n}=n^{2}+4 n+4 & \text { e) } a_{n}=1 & \text { f) } a_{n}=\left(3^{n+1}-1\right) / 2\end{array}$ $\begin{array}{lll}\text { g) } a_{n}=5 n! & \text { h) } a_{n}=2^{n} n! & 19 .\end{array}$ a) $a_{n}=3 a_{n-1} \quad$ b) $5,904,900$ 21. a) $a_{n}=n+a_{n-1}, a_{0}=0 \quad$ b) $a_{12}=78$ c) $a_{n}=n(n+1) / 2 \quad 23 . B(k)=[1+(0.07 / 12)] B(k-1)-$ 100 , with $B(0)=5000 \quad 25$ a) One 1 and one 0 , followed by two 1 s and two 0 s , followed by three 1 s and three 0 s , and so on; $1,1,1 \quad$ b) The positive integers are listed in increasing order with each even positive integer listed twice; $9,10,10$. c) The terms in odd-numbered locations are the successive powers of 2 ; the terms in even-numbered locations are all $0 ; 32,0,64$. d) $a_{n}=3 \cdot 2^{n-1} ; 384,768,1536$ e) $a_{n}=15-7(n-1)=22-7 n ;-34,-41,-48$ f) $a_{n}=\left(n^{2}+n+4\right) / 2 ; 57,68,80 \quad$ g) $a_{n}=2 n^{3}$; $1024,1458,2000$ h) $a_{n}=n!+1 ; 362881,3628801$, 39916801 27. Among the integers $1,2, \ldots, a_{n}$, where a_{n} is the nth positive integer not a perfect square, the nonsquares are $a_{1}, a_{2}, \ldots, a_{n}$ and the squares are $1^{2}, 2^{2}, \ldots, k^{2}$, where k is the integer with $k^{2}<n+k<(k+1)^{2}$. Consequently, $a_{n}=n+k$, where $k^{2}<a_{n}<(k+1)^{2}$. To find k, first note that $k^{2}<n+k<(k+1)^{2}$, so $k^{2}+1 \leq n+k \leq(k+1)^{2}-1$. Hence, $\left(k-\frac{1}{2}\right)^{2}+\frac{3}{4}=k^{2}-k+1 \leq n \leq k^{2}+k=\left(k+\frac{1}{2}\right)^{2}-\frac{1}{4}$. It follows that $k-\frac{1}{2}<\sqrt{n}<\bar{k}+\frac{1}{2}$, so $k=\{\sqrt{n}\}$ and $a_{n}=n+k=n+\{\sqrt{n}\}$. 29. a) 20 b) 11 c) 30 $\begin{array}{lllll}\text { d) } 511 & 31 \text {. a) } 1533 & \text { b) } 510 & \text { c) } 4923 & \text { d) } 9842\end{array}$ 33. a) 21 b) $78 \quad$ c) $18 \quad$ d) $18 \quad 35 . \sum_{j=1}^{n}\left(a_{j}-a_{j-1}\right)=a_{n}-a_{0}$ 37. a) n^{2} b) $n(n+1) / 2 \quad 39.15150 \quad$ 41. $\frac{n(n+1)(2 n+1)}{3}+$ $\frac{n(n+1)}{2}+(n+1)\left(m-(n+1)^{2}+1\right)$, where $n=\lfloor\sqrt{m}\rfloor-1$ 43. a) 0 b) 1680 c) 1 d) $1024 \quad 45.34$

Section 2.5

1. a) Countably infinite, $-1,-2,-3,-4, \ldots$ b) Countably infinite, $0,2,-2,4,-4, \ldots$ c) Countably infinite, 99, 98, 97, .. d) Uncountable e) Finite f) Countably infinite, $0,7,-7,14,-14, \ldots \quad$ 3. a) Countable: match n with the string of $n 1 \mathrm{~s}$. b) Countable. To find a correspondence, follow the path in Example 4, but omit fractions in the top three rows (as well as continuing to omit fractions not in lowest terms). c) Uncountable d) Uncountable 5. Suppose m new guests arrive at the fully occupied hotel. Move the guest in Room n to Room $m+n$ for $n=1,2,3, \ldots$; then the new guests can occupy rooms 1 to m. 7. For $n=1,2,3, \ldots$, put
the guest currently in Room $2 n$ into Room n, and the guest currently in Room $2 n-1$ into Room n of the new building. 9. Move the guess currently Room i to Room $2 i+1$ for $i=1,2,3, \ldots$. Put the j th guest from the k th bus into Room $2^{k}(2 j+1)$. 11. a) $A=[1,2]$ (closed interval of real numbers from 1 to 2), $B=[3,4] \mathbf{b}) A=[1,2] \cup \mathbf{Z}^{+}$, $\left.B=[3,4] \cup \mathbf{Z}^{+} \mathbf{c}\right) A=[1,3], B=[2,4] \quad$ 13. Suppose that A is countable. Then either A has cardinality n for some nonnegative integer n, in which case there is a one-to-one function from A to a subset of \mathbf{Z}^{+}(the range is the first n positive integers), or there exists a one-to-one correspondence f from A to \mathbf{Z}^{+}; in either case we have satisfied Definition 2. Conversely, suppose that $|A| \leq\left|\mathbf{Z}^{+}\right|$. By definition, this means that there is a one-to-one function from A to \mathbf{Z}^{+}, so A has the same cardinality as a subset of \mathbf{Z}^{+}(namely the range of that function). By Exercise 16 we conclude that A is countable. 15. Assume that B is countable. Then the elements of B can be listed as $b_{1}, b_{2}, b_{3}, \ldots$. Because A is a subset of B, taking the subsequence of $\left\{b_{n}\right\}$ that contains the terms that are in A gives a listing of the elements of A. Because A is uncountable, this is impossible. 17. Assume that $A-B$ is countable. Then, because $A=(A-B) \cup(A \cap B)$, the elements of A can be listed in a sequence by alternating elements of $A-B$ and elements of $A \cap B$. This contradicts the uncountability of A. 19. We are given bijections f from A to B and g from C to D. Then the function from $A \times C$ to $B \times D$ that sends (a, c) to $(f(a), g(c))$ is a bijection. 21. By the definition of $|A| \leq|B|$, there is a one-to-one function $f: A \rightarrow B$. Similarly, there is a one-to-one function $g: B \rightarrow C$. By Exercise 33 in Section 2.3, the composition $g \circ f: A \rightarrow C$ is one-to-one. Therefore by definition $|A| \leq|C|$. 23. Using the Axiom of Choice from set theory, choose distinct elements a_{1}, a_{2}, a_{3}, \ldots of A one at a time (this is possible because A is infinite). The resulting set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is the desired infinite subset of A. 25. The set of finite strings of characters over a finite alphabet is countably infinite, because we can list these strings in alphabetical order by length. Therefore the infinite set S can be identified with an infinite subset of this countable set, which by Exercise 16 is also countably infinite. 27. Suppose that $A_{1}, A_{2}, A_{3}, \ldots$ are countable sets. Because A_{i} is countable, we can list its elements in a sequence as $a_{i 1}, a_{i 2}, a_{i 3}, \ldots$ The elements of the set $\bigcup_{i=1}^{n} A_{i}$ can be listed by listing all terms $a_{i j}$ with $i+j=2$, then all terms $a_{i j}$ with $i+j=3$, then all terms $a_{i j}$ with $i+j=4$, and so on. 29. There are a finite number of bit strings of length m, namely, 2^{m}. The set of all bit, strings is the union of the sets of bit strings of length m for $m=0,1,2, \ldots$. Because the union of a countable number of countable sets is countable (see Exercise 27), there are a countable number of bit strings. 31. It is clear from the formula that the range of values the function takes on for a fixed value of $m+n$, say $m+n=x$, is $(x-2)(x-1) / 2+1$ through $(x-2)(x-1) / 2+(x-1)$, because m can assume the values $1,2,3, \ldots,(x-1)$ under these conditions, and the first term in the formula is a fixed positive integer when $m+n$ is fixed. To show that this function is one-to-one and onto, we merely need to show that the range of values for
$x+1$ picks up precisely where the range of values for x left off, i.e., that $f(x-1,1)+1=f(1, x)$. We have $f(x-1,1)+1=\frac{(x-2)(x-1)}{2}+(x-1)+1=\frac{x^{2}-x+2}{2}=$ $\frac{(x-1) x}{2}+1=f(1, x)$. 33. By the Schröder-Bernstein theorem, it suffices to find one-to-one functions $f:(0,1) \rightarrow[0,1]$ and $g:[0,1] \rightarrow(0,1)$. Let $f(x)=x$ and $g(x)=(x+1) / 3$. 35. Each element A of the power set of the set of positive integers (i.e., $A \subseteq \mathbf{Z}^{+}$) can be represented uniquely by the bit string $a_{1} a_{2} a_{3} \ldots$, where $a_{i}=1$ if $i \in A$ and $a_{i}=0$ if $i \notin A$. Assume there were a one-to-one correspondence $f: \mathbf{Z}^{+} \rightarrow \mathcal{P}\left(\mathbf{Z}^{+}\right)$. Form a new bit string $s=s_{1} s_{2} s_{3} \ldots$ by setting s_{i} to be 1 minus the i th bit of $f(i)$. Then because s differs in the i bit from $f(i), s$ is not in the range of f, a contradiction. 37. For any finite alphabet there are a finite number of strings of length n, whenever n is a positive integer. It follows by the result of Exercise 27 that there are only a countable number of strings from any given finite alphabet. Because the set of all computer programs in a particular language is a subset of the set of all strings of a finite alphabet, which is a countable set by the result from Exercise 16, it is itself a countable set. 39. Exercise 37 shows that there are only a countable number of computer programs. Consequently, there are only a countable number of computable functions. Because, as Exercise 38 shows, there are an uncountable number of functions, not all functions are computable.

Section 2.6

1. a) 3×4
b) $\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right]$
c) $\left[\begin{array}{llll}2 & 0 & 4 & 6\end{array}\right]$
d) 1
e) $\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 4 & 3 \\ 3 & 6 & 7\end{array}\right]$
2. a) $\left[\begin{array}{ll}1 & 11 \\ 2 & 18\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & -2 & -3 \\ 1 & 0 & 2 \\ 9 & -4 & 4\end{array}\right]$
c) $\left[\begin{array}{cccc}-4 & 15 & -4 & 1 \\ -3 & 10 & 2 & -3 \\ 0 & 2 & -8 & 6 \\ 1 & -8 & 18 & -13\end{array}\right]$
3. $\left[\begin{array}{cc}9 / 5 & -6 / 5 \\ -1 / 5 & 4 / 5\end{array}\right]$
$7 . \mathbf{0}+\mathbf{A}=\left[0+a_{i j}\right]=\left[a_{i j}+0\right]=\mathbf{0}+\mathbf{A} \quad 9 . \mathbf{A}+(\mathbf{B}+\mathbf{C})=$ $\left[a_{i j}+\left(b_{i j}+c_{i j}\right)\right]=\left[\left(a_{i j}+b_{i j}\right)+c_{i j}\right]=(\mathbf{A}+\mathbf{B})+\mathbf{C}$ 11. The number of rows of \mathbf{A} equals the number of columns of \mathbf{B}, and the number of columns of \mathbf{A} equals the number of rows of \mathbf{B}. 13. $\mathbf{A}(\mathbf{B C})=$ $\left[\sum_{q} a_{i q}\left(\sum_{r} b_{q r} c_{r l}\right)\right] \quad=\left[\sum_{q} \sum_{r} a_{i q} b_{q r} c_{r l}\right]=$ $\left[\sum_{r} \sum_{q} a_{i q} b_{q r} c_{r l}\right]=\left[\sum_{r}\left(\sum_{q} a_{i q} b_{q r}\right) c_{r l}\right]=(\mathbf{A B}) \mathbf{C}$ 15. $\mathbf{A}^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] \quad$ 17. a) Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$. Then $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$. We have $(\mathbf{A}+\mathbf{B})^{t}=\left[a_{j i}+b_{j i}\right]=\left[a_{j i}\right]+\left[b_{j i}\right]=\mathbf{A}^{t}+\mathbf{B}^{t}$.
b) Using the same notation as in part (a), we have $\mathbf{B}^{t} \mathbf{A}^{t}=$
