set woman $j$ 's proposal list to be empty
while rejected men remain
for $i:=1$ to $s$
if man $i$ is marked rejected then add $i$ to the proposal list for the woman $j$ who ranks highest on his preference list but does not appear on his rejection list, and mark $i$ as not rejected
for $j:=1$ to $s$
if woman $j$ 's proposal list is nonempty then remove from $j$ 's proposal list all men $i$ except the man $i_{0}$ who ranks highest on her preference list, and for each such man $i$ mark him as rejected and add $j$ to his rejection list for $j:=1$ to $s$
match $j$ with the one man on $j$ 's proposal list \{This matching is stable.\}
63. If the assignment is not stable, then there is a man $m$ and a woman $w$ such that $m$ prefers $w$ to the woman $w^{\prime}$ with whom he is matched, and $w$ prefers $m$ to the man with whom she is matched. But $m$ must have proposed to $w$ before he proposed to $w^{\prime}$, because he prefers the former. Because $m$ did not end up matched with $w$, she must have rejected him. Women reject a suitor only when they get a better proposal, and they eventually get matched with a pending suitor, so the woman with whom $w$ is matched must be better in her eyes than $m$, contradicting our original assumption. Therefore the marriage is stable. 65. Run the two programs on their inputs concurrently and report which one halts.

## Section 3.2

1. The choices of $C$ and $k$ are not unique. a) $C=1, k=10$ b) $C=4, k=7$ c) Nod) $C=5, k=1 \mathbf{e}) C=1, k=0$ f) $C=$ 1, $k=2 \quad$ 3. $x^{4}+9 x^{3}+4 x+7 \leq 4 x^{4}$ for all $x>9$; witnesses $C=4, k=9 \quad$ 5. $\left(x^{2}+1\right) /(x+1)=x-1+2 /(x+1)<x$ for all $x>1$; witnesses $C=1, k=1 \quad 7$. The choices of $C$ and $k$ are not unique. a) $n=3, C=3, k=1 \quad$ b) $n=3$, $C=4, k=1$ c) $n=1, C=2, k=1 \mathbf{d )} n=0, C=2, k=1$ 9. $x^{2}+4 x+17 \leq 3 x^{3}$ for all $x>17$, so $x^{2}+4 x+17$ is $O\left(x^{3}\right)$, with witnesses $C=3, k=17$. However, if $x^{3}$ were $O\left(x^{2}+4 x+17\right)$, then $x^{3} \leq C\left(x^{2}+4 x+17\right) \leq 3 C x^{2}$ for some $C$, for all sufficiently large $x$, which implies that $x \leq 3 C$ for all sufficiently large $x$, which is impossible. Hence, $x^{3}$ is not $O\left(x^{2}+4 x+17\right)$. 11. $3 x^{4}+1 \leq 4 x^{4}=8\left(x^{4} / 2\right)$ for all $x>1$, so $3 x^{4}+1$ is $O\left(x^{4} / 2\right)$, with witnesses $C=8, k=1$. Also $x^{4} / 2 \leq 3 x^{4}+1$ for all $x>0$, so $x^{4} / 2$ is $O\left(3 x^{4}+1\right)$, with witnesses $C=1, k=0$. 13. Because $2^{n} \leq 3^{n}$ for all $n>0$, it follows that $2^{n}$ is $O\left(3^{n}\right)$, with witnesses $C=1, k=0$. However, if $3^{n}$ were $O\left(2^{n}\right)$, then for some $C, 3^{n} \leq C \cdot 2^{n}$ for all sufficiently large $n$. This says that $C \geq(3 / 2)^{n}$ for all sufficiently large $n$, which is impossible. Hence, $3^{n}$ is not $O\left(2^{n}\right)$. 15. All functions for which there exist real numbers $k$ and $C$ with $|f(x)| \leq C$ for $x>k$. These are the functions $f(x)$ that are bounded for all sufficiently large $x$. 17. There are constants $C_{1}, C_{2}, k_{1}$, and $k_{2}$ such that $|f(x)| \leq C_{1}|g(x)|$ for all $x>k_{1}$ and $|g(x)| \leq C_{2}|h(x)|$ for all $x>k_{2}$. Hence, for $x>$
$\max \left(k_{1}, k_{2}\right)$ it follows that $|f(x)| \leq C_{1}|g(x)| \leq C_{1} C_{2}|h(x)|$. This shows that $f(x)$ is $O(h(x))$. 19. $2^{n+1}$ is $O\left(2^{n}\right)$; $2^{2 n}$ is not. 21. $1000 \log n, \sqrt{n}, n \log n, n^{2} / 1000000,2^{n}$, $3^{n}, 2 n!$ 23. The algorithm that uses $n \log n$ operations 25. a) $O\left(n^{3}\right)$ b) $O\left(n^{5}\right) \quad$ c) $O\left(n^{3} \cdot n!\right.$ 27. a) $O\left(n^{2} \log n\right)$ b) $O\left(n^{2}(\log n)^{2}\right)$ c) $O\left(n^{2^{n}}\right) \quad$ 29. a) Neither $\Theta\left(x^{2}\right)$ nor $\Omega\left(x^{2}\right)$ b) $\Theta\left(x^{2}\right)$ and $\Omega\left(x^{2}\right) \quad$ c) Neither $\Theta\left(x^{2}\right)$ nor $\Omega\left(x^{2}\right)$ d) $\Omega\left(x^{2}\right)$, but not $\Theta\left(x^{2}\right)$ e) $\Omega\left(x^{2}\right)$, but not $\Theta\left(x^{2}\right)$ f) $\Omega\left(x^{2}\right)$ and $\Theta\left(x^{2}\right)$ 31. If $f(x)$ is $\Theta(g(x))$, then there exist constants $C_{1}$ and $C_{2}$ with $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$. It follows that $|f(x)| \leq C_{2}|g(x)|$ and $|g(x)| \leq\left(1 / C_{1}\right)|f(x)|$ for $x>k$. Thus, $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. Conversely, suppose that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. Then there are constants $C_{1}, C_{2}, k_{1}$, and $k_{2}$ such that $|f(x)| \leq$ $C_{1}|g(x)|$ for $x>k_{1}$ and $|g(x)| \leq C_{2}|f(x)|$ for $x>k_{2}$. We can assume that $C_{2}>0$ (we can always make $C_{2}$ larger). Then we have $\left(1 / C_{2}\right)|g(x)| \leq|f(x)| \leq C_{1}|g(x)|$ for $x>\max \left(k_{1}, k_{2}\right)$. Hence, $f(x)$ is $\Theta(g(x))$. 33. If $f(x)$ is $\Theta(g(x))$, then $f(x)$ is both $O(g(x))$ and $\Omega(g(x))$. Hence, there are positive constants $C_{1}, k_{1}, C_{2}$, and $k_{2}$ such that $|f(x)| \leq C_{2}|g(x)|$ for all $x>k_{2}$ and $|f(x)| \geq C_{1}|g(x)|$ for all $x>k_{1}$. It follows that $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$ whenever $x>k$, where $k=\max \left(k_{1}, k_{2}\right)$. Conversely, if there are positive constants $C_{1}, C_{2}$, and $k$ such that $C_{1}|g(x)| \leq|f(x)| \leq C_{2}|g(x)|$ for $x>k$, then taking $k_{1}=k_{2}=k$ shows that $f(x)$ is both $O(g(x))$ and $\Theta(g(x))$.

2. If $f(x)$ is $\Theta(1)$, then $|f(x)|$ is bounded between positive constants $C_{1}$ and $C_{2}$. In other words, $f(x)$ cannot grow larger than a fixed bound or smaller than the negative of this bound and must not get closer to 0 than some fixed bound. 39. Because $f(x)$ is $O(g(x))$, there are constants $C$ and $k$ such that $|f(x)| \leq C|g(x)|$ for $x>k$. Hence, $\left|f^{n}(x)\right| \leq C^{n}\left|g^{n}(x)\right|$ for $x>k$, so $f^{n}(x)$ is $O\left(g^{n}(x)\right)$ by taking the constant to be $C^{n}$. 41. Because $f(x)$ and $g(x)$ are increasing and unbounded, we can assume $f(x) \geq 1$ and $g(x) \geq 1$ for sufficiently large $x$. There are constants $C$ and $k$ with $f(x) \leq C g(x)$ for $x>k$. This implies that $\log f(x) \leq \log C+\log g(x)<2 \log g(x)$ for sufficiently large $x$. Hence, $\log f(x)$ is $O(\log g(x))$. 43. By definition there are positive constraints $C_{1}, C_{1}^{\prime}$, $C_{2}, C_{2}^{\prime}, k_{1}, k_{1}^{\prime}, k_{2}$, and $k_{2}^{\prime}$ such that $f_{1}(x) \geq C_{1}|g(x)|$ for all $x>k_{1}, f_{1}(x) \leq C_{1}^{\prime}|g(x)|$ for all $x>k_{1}^{\prime}$, $f_{2}(x) \geq C_{2}|g(x)|$ for all $x>k_{2}$, and $f_{2}(x) \leq C_{2}^{\prime}|g(x)|$ for all $x>k_{2}^{\prime}$. Adding the first and third inequalities shows that $f_{1}(x)+f_{2}(x) \geq\left(C_{1}+C_{2}\right)|g(x)|$ for all $x>k$ where
$k=\max \left(k_{1}, k_{2}\right)$. Adding the second and fourth inequalities shows that $f_{1}(x)+f_{2}(x) \leq\left(C_{1}^{\prime}+C_{2}^{\prime}\right)|g(x)|$ for all $x>k^{\prime}$ where $k^{\prime}=\max \left(k_{1}^{\prime}, k_{2}^{\prime}\right)$. Hence, $f_{1}(x)+f_{2}(x)$ is $\Theta(g(x))$. This is no longer true if $f_{1}$ and $f_{2}$ can assume negative values. 45. This is false. Let $f_{1}=x^{2}+2 x, f_{2}(x)=x^{2}+x$, and $g(x)=x^{2}$. Then $f_{1}(x)$ and $f_{2}(x)$ are both $O(g(x))$, but $\left(f_{1}-f_{2}\right)(x)$ is not. 47. Take $f(n)$ to be the function with $f(n)=n$ if $n$ is an odd positive integer and $f(n)=1$ if $n$ is an even positive integer and $g(n)$ to be the function with $g(n)=1$ if $n$ is an odd positive integer and $g(n)=n$ if $n$ is an even positive integer. 49. There are positive constants $C_{1}, C_{2}, C_{1}^{\prime}, C_{2}^{\prime}, k_{1}, k_{1}^{\prime}, k_{2}$, and $k_{2}^{\prime}$ such that $\left|f_{1}(x)\right| \geq C_{1}\left|g_{1}(x)\right|$ for all $x>k_{1},\left|f_{1}(x)\right| \leq C_{1}^{\prime}\left|g_{1}(x)\right|$ for all $x \geq k_{1}^{\prime},\left|f_{2}(x)\right|>C_{2}\left|g_{2}(x)\right|$ for all $x>k_{2}$, and $\left|f_{2}(x)\right| \leq C_{2}^{\prime}\left|g_{2}(x)\right|$ for all $x>k_{2}^{\prime}$. Because $f_{2}$ and $g_{2}$ are never zero, the last two inequalities can be rewritten as $\left|1 / f_{2}(x)\right| \leq\left(1 / C_{2}\right)\left|1 / g_{2}(x)\right|$ for all $x>k_{2}$ and $\left|1 / f_{2}(x)\right| \geq$ $\left(1 / C_{2}^{\prime}\right)\left|1 / g_{2}(x)\right|$ for all $x>k_{2}^{\prime}$. Multiplying the first and rewritten fourth inequalities shows that $\left|f_{1}(x) / f_{2}(x)\right| \geq$ $\left(C_{1} / C_{2}^{\prime}\right)\left|g_{1}(x) / g_{2}(x)\right|$ for all $x>\max \left(k_{1}, k_{2}^{\prime}\right)$, and multiplying the second and rewritten third inequalities gives $\left|f_{1}(x) / f_{2}(x)\right| \leq\left(C_{1}^{\prime} / C_{2}\right)\left|g_{1}(x) / g_{2}(x)\right|$ for all $x>$ $\max \left(k_{1}^{\prime}, k_{2}\right)$. It follows that $f_{1} / f_{2}$ is big-Theta of $g_{1} / g_{2}$. 51. There exist positive constants $C_{1}, C_{2}, k_{1}, k_{2}, k_{1}^{\prime}, k_{2}^{\prime}$ such that $|f(x, y)| \leq C_{1}|g(x, y)|$ for all $x>k_{1}$ and $y>k_{2}$ and $|f(x, y)| \geq C_{2}|g(x, y)|$ for all $x>k_{1}^{\prime}$ and $y>k_{2}^{\prime}$. 53. $\left(x^{2}+x y+x \log y\right)^{3}<\left(3 x^{2} y^{3}\right)=27 x^{6} y^{3}$ for $x>1$ and $y>1$, because $x^{2}<x^{2} y, x y<x^{2} y$, and $x \log y<x^{2} y$. Hence, $\left(x^{2}+x y+x \log y\right)^{3}$ is $O\left(x^{6} y^{3}\right)$. 55. For all positive real numbers $x$ and $y,\lfloor x y\rfloor \leq x y$. Hence, $\lfloor x y\rfloor$ is $O(x y)$ from the definition, taking $C=1$ and $k_{1}=k_{2}=0$. 57. Clearly $n^{d}<n^{c}$ for all $n \geq 2$; therefore $n^{d}$ is $O\left(n^{c}\right)$. The ratio $n^{d} / n^{c}=n^{d-c}$ is unbounded so there is no constant $C$ such that $n^{d} \leq C n^{c}$ for large $n$. 59. If $f$ and $g$ are positive-valued functions such that $\lim _{n \rightarrow \infty} f(x) / g(x)=C<\infty$, then $f(x)<(C+1) g(x)$ for large enough $x$, so $f(n)$ is $O(g(n))$. If that limit is $\infty$, then clearly $f(n)$ is not $O(g(n))$. Here repeated applications of L'Hôpital's rule shows that $\lim _{x \rightarrow \infty} x^{d} / b^{x}=0$ and $\lim _{x \rightarrow \infty} b^{x} / x^{d}=\infty$. 61. a) $\lim _{x \rightarrow \infty} x^{2} / x^{3}=$ $\lim _{x \rightarrow \infty} 1 / x=0 \quad$ b) $\lim _{x \rightarrow \infty} \frac{x \log x}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\log x}{x}=$ $\lim _{x \rightarrow \infty} \frac{1}{x \ln 2}=0$ (using L'Hôpital's rule) c) $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=$ $\lim _{x \rightarrow \infty} \frac{2 x}{2^{x} \cdot \ln 2}=\lim _{x \rightarrow \infty} \frac{2}{2^{x} \cdot(\ln 2)^{2}}=0$ (using L'Hôpital's rule) d) $\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{x^{2}}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)=1 \neq 0$

3. No. Take $f(x)=1 / x^{2}$ and $g(x)=1 / x$. 67. a) Because $\lim _{x \rightarrow \infty} f(x) / g(x)=0,|f(x)| /|g(x)|<1$ for sufficiently large $x$. Hence, $|f(x)|<|g(x)|$ for $x>k$ for some constant $k$. Therefore, $f(x)$ is $O(g(x))$. b) Let $f(x)=g(x)=x$. Then $f(x)$ is $O(g(x))$, but $f(x)$ is not $o(g(x))$ because $f(x) / g(x)=1$. 69. Because $f_{2}(x)$ is $o(g(x))$, from Exercise 67(a) it follows that $f_{2}(x)$ is $O(g(x))$. By Corollary 1, we have $f_{1}(x)+f_{2}(x)$ is $O(g(x))$. 71. We can easily show that $(n-i)(i+1) \geq n$ for $i=0,1, \ldots, n-1$. Hence, $(n!)^{2}=(n \cdot 1)((n-1) \cdot 2) \cdot((n-2) \cdot 3) \cdots(2 \cdot(n-$ 1)) $\cdot(1 \cdot n) \geq n^{n}$. Therefore, $2 \log n!\geq n \log n$. 73. Compute that $\log 5!\approx 6.9$ and $(5 \log 5) / 4 \approx 2.9$, so the inequality holds for $n=5$. Assume $n \geq 6$. Because $n$ ! is the product of all the integers from $n$ down to 1 , we have $n!>n(n-1)(n-2) \cdots\lceil n / 2\rceil$ (because at least the term 2 is missing). Note that there are more than $n / 2$ terms in this product, and each term is at least as big as $n / 2$. Therefore the product is greater than $(n / 2)^{(n / 2)}$. Taking the $\log$ of both sides of the inequality, we have $\log n!>$ $\log \left(\frac{n}{2}\right)^{n / 2}=\frac{n}{2} \log \frac{n}{2}=\frac{n}{2}(\log n-1)>(n \log n) / 4$, because $n>4$ implies $\log n-1>(\log n) / 2$. 75. All are not asymptotic.

## Section 3.3

```
1. \(O(1) \quad\) 3. \(O\left(n^{2}\right) \quad\) 5. \(2 n-1 \quad\) 7. Linear \(\quad\) 9. \(O(n)\)
11. a) procedure disjointpair \(\left(S_{1}, S_{2}, \ldots, S_{n}\right.\) :
    subsets of \(\{1,2, \ldots, n\}\) )
answer \(:=\) false
for \(i:=1\) to \(n\)
    for \(j:=i+1\) to \(n\)
        disjoint \(:=\) true
        for \(k:=1\) to \(n\)
            if \(k \in S_{i}\) and \(k \in S_{j}\) then disjoint \(:=\) false
        if disjoint then answer \(:=\) true
    return answer
```

b) $O\left(n^{3}\right) \quad$ 13. a) power $:=1, y:=1 ; i:=1$, power $:=2, y:=3 ; i:=2$, power $:=4, y:=15$ b) $2 n$ multiplications and $n$ additions $\quad 15$. a) $2^{10^{9}} \approx 10^{3 \times 10^{8}}$ $\begin{array}{llll}\text { b) } 10^{9} & \text { c) } 3.96 \times 10^{7} & \text { d) } 3.16 \times 10^{4} & \text { e) } 29\end{array} \quad$ f) 12 17. a) $2^{2^{60 \cdot 10^{12}}}$ b) $2^{60 \cdot 10^{12}}$ c) $\left\lfloor 2^{\sqrt{60} \cdot 10^{6}}\right\rfloor \approx 2 \times 10^{2331768}$ $\left.\begin{array}{lllll}\text { d) } 60,000,000 & \text { e) } 7,745,966 & \text { f) } 45 & \text { g) } 6 & 19 .\end{array}\right) 36$ years b) 13 days c) 19 minutes 21. a) Less than 1 millisecond more b) 100 milliseconds more c) $2 n+1$ milliseconds more d) $3 n^{2}+3 n+1$ milliseconds more e) Twice as much time f) $2^{2 n+1}$ times as many milliseconds g) $n+1$ times as many milliseconds 23 . The average number of comparisons is $(3 n+4) / 2$. 25. $O(\log n)$ 27. $O(n) \quad$ 29. $O\left(n^{2}\right)$ 31. $O(n)$ 33. $O(n) \quad$ 35. $O(\log n)$ comparisons; $O\left(n^{2}\right)$ swaps 37. $O\left(n^{2} 2^{n}\right) \quad$ 39. a) doubles $\left.\mathbf{b}\right)$ increases by 1 41. Use Algorithm 1, where $\mathbf{A}$ and $\mathbf{B}$ are now $n \times n$ upper triangular matrices, by replacing $m$ by $n$ in line 1 , and

