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3 are relatively prime to 10. Therefore the sum can no longer
be 0 modulo 10. 45. Working modulo 10, solve for d9.
The check digit for 11100002 is 5. 47. PLEASE SEND
MONEY 49. a) QAL HUVEM AT WVESGB b) QXB
EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at sta-
tion n. Basis step: We are told that P(1) is true. Induc-
tive step: We are told that P(n) implies P(n + 1) for each
n ≥ 1. Therefore by the principle of mathematical induc-
tion, P(n) is true for all positive integers n. 3. a) 12 =
1 · 2 · 3/6 b) Both sides of P(1) shown in part (a) equal 1.
c) 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)/6 d) For each
k ≥ 1 that P(k) implies P(k + 1); in other words, that as-
suming the inductive hypothesis [see part (c)] we can show
12 + 22 + · · · + k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6
e) (12 + 22 + · · · + k2) + (k + 1)2 = [k(k + 1)(2k +
1)/6] + (k + 1)2 = [(k + 1)/6][k(2k + 1) + 6(k +
1)] = [(k + 1)/6](2k2 + 7k + 6) = [(k + 1)/6](k +
2)(2k+3) = (k+1)(k+2)(2k+3)/6 f) We have completed
both the basis step and the inductive step, so by the principle
of mathematical induction, the statement is true for every pos-
itive integer n. 5. Let P(n) be “12+32+· · ·+ (2n+1)2 =
(n+ 1)(2n+ 1)(2n+ 3)/3.” Basis step: P(0) is true because
12 = 1 = (0+1)(2·0+1)(2·0+3)/3. Inductive step:Assume
that P(k) is true. Then 12+32+· · ·+ (2k+1)2+[2(k+1)+
1]2 = (k+1)(2k+1)(2k+3)/3+ (2k+3)2 = (2k+3)[(k+
1)(2k+1)/3+(2k+3)] = (2k+3)(2k2+9k+10)/3 = (2k+
3)(2k+5)(k+2)/3= [(k+1)+1][2(k+1)+1][2(k+1)+3]/3.
7. Let P(n) be “

∑n
j=0 3 · 5j = 3(5n+1 − 1)/4.” Basis step:

P(0) is true because
∑0

j=0 3 · 5j = 3 = 3(51 − 1)/4.

Inductive step: Assume that
∑k

j=0 3 · 5j = 3(5k+1 − 1)/4.

Then
∑k+1

j=0 3 · 5j = (
∑k

j=0 3 · 5j ) + 3 · 5k+1 = 3(5k+1 −
1)/4+ 3 · 5k+1 = 3(5k+1+ 4 · 5k+1− 1)/4 = 3(5k+2− 1)/4.
9. a) 2+4+6+· · ·+2n= n(n+1) b) Basis step: 2= 1·(1+1)

is true. Inductive step: Assume that 2 + 4 + 6 + · · · + 2k =
k(k + 1). Then (2 + 4 + 6 + · · · + 2k) + 2(k + 1) =
k(k+1)+2(k+1) = (k+1)(k+2). 11. a)

∑n
j=1 1/2j =

(2n − 1)/2n b) Basis step: P(1) is true because 1
2 = (21−

1)/21. Inductive step:Assume that
∑k

j=1 1/2j = (2k−1)/2k .

Then
∑k+1

j=1
1

2j = (
∑k

j=1
1

2j ) + 1
2k+1 = 2k−1

2k + 1
2k+1 =

2k+1−2+1
2k+1 = 2k+1−1

2k+1 . 13. Let P(n) be “12 − 22 + 32 −
· · · + (−1)n−1n2 = (−1)n−1n(n + 1)/2.” Basis step: P(1)

is true because 12 = 1 = (−1)012. Inductive step: Assume
that P(k) is true. Then 12 − 22 + 32 − · · · + (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)/2 + (−1)k(k + 1)2 =
(−1)k(k+ 1)[−k/2+ (k+ 1)] = (−1)k(k+ 1)[(k/2)+ 1] =
(−1)k(k+1)(k+2)/2. 15. Let P(n) be “1 ·2+2 ·3+· · ·+
n(n+1)= n(n+1)(n+2)/3.” Basis step: P(1) is true because

1·2= 2= 1(1+1)(1+2)/3. Inductive step:Assume that P(k)

is true. Then 1·2+2·3+· · ·+k(k+1)+(k+1)(k+2)= [k(k+
1)(k+ 2)/3]+ (k+ 1)(k+ 2) = (k+ 1)(k+ 2)[(k/3)+ 1] =
(k+1)(k+2)(k+3)/3. 17. Let P(n) be the statement that
14+24+34+· · · + n4 = n(n+1)(2n+1)(3n2+3n−1)/30.
P(1) is true because 1 · 2 · 3 · 5/30 = 1. Assume that P(k)

is true. Then (14 + 24 + 34 + · · · + k4) + (k + 1)4 =
k(k + 1)(2k + 1)(3k2 + 3k − 1)/30 + (k + 1)4 = [(k +
1)/30][k(2k + 1)(3k2 + 3k − 1) + 30(k + 1)3] = [(k +
1)/30](6k4 + 39k3 + 91k2 + 89k + 30) = [(k + 1)/30](k +
2)(2k+ 3)[3(k+ 1)2+ 3(k+ 1)− 1]. This demonstrates that
P(k + 1) is true. 19. a) 1 + 1

4 < 2 − 1
2 b) This is true

because 5/4 is less than 6/4. c) 1+ 1
4 + · · · + 1

k2 < 2 − 1
k

d) For each k ≥ 2 that P(k) implies P(k+1); in other words,
we want to show that assuming the inductive hypothesis [see
part (c)] we can show 1+ 1

4 + · · · + 1
k2 + 1

(k+1)2 < 2− 1
k+1

e) 1+ 1
4+ · · · + 1

k2 + 1
(k+1)2 < 2 − 1

k
+ 1

(k+1)2 =
2−[ 1

k
− 1

(k+1)2

] = 2−[ k2+2k+1−k
k(k+1)2

] = 2− k2+k
k(k+1)2 − 1

k(k+1)2 =
2 − 1

k+1 − 1
k(k+1)2 < 2 − 1

k+1 f) We have completed both
the basis step and the inductive step, so by the principle of
mathematical induction, the statement is true for every inte-
ger n greater than 1. 21. Let P(n) be “2n > n2.” Basis
step: P(5) is true because 25 = 32 > 25 = 52. Induc-
tive step: Assume that P(k) is true, that is, 2k > k2. Then
2k+1 = 2 · 2k > k2+ k2 > k2+ 4k ≥ k2+ 2k+ 1 = (k+ 1)2

because k > 4. 23. By inspection we find that the inequality
2n+ 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the
proposition that this inequality holds for the positive integer n.
P(4), the basis case, is true because 2 ·4+3 = 11 ≤ 16 = 24.
For the inductive step assume that P(k) is true. Then, by the in-
ductive hypothesis, 2(k+1)+3= (2k+3)+2 < 2k+2. But be-
cause k ≥ 1, 2k+2 ≤ 2k+2k = 2k+1. This shows that P(k+1)

is true. 25. Let P(n) be “1 + nh ≤ (1 + h)n, h > −1.”
Basis step: P(0) is true because 1+0 ·h = 1 ≤ 1 = (1+h)0.
Inductive step: Assume 1 + kh ≤ (1 + h)k . Then because
(1+h) > 0, (1+h)k+1 = (1+h)(1+h)k ≥ (1+h)(1+kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be
“1/
√

1 + 1/
√

2 + 1/
√

3 + · · · + 1/
√

n > 2
(√

n+ 1− 1
)
.”

Basis step: P(1) is true because 1 > 2
(√

2− 1
)
. Induc-

tive step: Assume that P(k) is true. Then 1 + 1/
√

2 + · · · +
1/
√

k + 1/
√

k + 1 > 2
(√

k + 1− 1
) + 1/

√
k + 1. If we

show that 2
(√

k + 1− 1
) + 1/

√
k + 1 > 2

(√
k + 2− 1

)
,

it follows that P(k + 1) is true. This inequality is equiv-
alent to 2

(√
k + 2−√k + 1

)
< 1/

√
k + 1, which is

equivalent to 2
(√

k + 2−√k + 1
) (√

k + 2+ √
k + 1

)
<√

k + 1/
√

k + 1 + √
k + 2/

√
k + 1. This is equivalent to

2 < 1 + √k + 2/
√

k + 1, which is clearly true. 29. Let
P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true be-
cause H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume
that H2k ≤ 1 + k. Then H2k+1 = H2k+∑2k+1

j=2k+1
1
j
≤

1 + k + 2k
(

1
2k+1

)
< 1 + k + 1 = 1 + (k + 1). 31. Basis

step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then
(k+1)2+(k+1) = k2+2k+1+k+1 = (k2+k)+2(k+1),
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the sum of a multiple of 2 (by the inductive hypothesis) and a
multiple of 2 (by definition), hence, divisible by 2. 33. Let
P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true
because 05 − 0 = 0 is divisible by 5. Inductive step: As-
sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then
(k+1)5−(k+1)= (k5+5k4+10k3+10k2+5k+1)−(k+1)=
(k5 − k) + 5(k4 + 2k3 + 2k2 + k) is also divisible by 5,
because both terms in this sum are divisible by 5. 35. Let
P(n) be the proposition that (2n − 1)2 − 1 is divisible by
8. The basis case P(1) is true because 8 | 0. Now as-
sume that P(k) is true. Because [(2(k + 1) − 1]2 − 1 =
[(2k− 1)2 − 1] + 8k, P (k+ 1) is true because both terms on
the right-hand side are divisible by 8. This shows that P(n)

is true for all positive integers n, so m2 − 1 is divisible by
8 whenever m is an odd positive integer. 37. Basis step:
111+1+122·1−1 = 121+12 = 133 Inductive step:Assume the
inductive hypothesis, that 11n+1+122n−1 is divisible by 133.
Then 11(n+1)+1 + 122(n+1)−1 = 11 · 11n+1 + 144 · 122n−1 =
11 · 11n+1 + (11+ 133) · 122n−1 = 11(11n+1 + 122n−1)+
133 · 122n−1. The expression in parentheses is divisible by
133 by the inductive hypothesis, and obviously the second
term is divisible by 133, so the entire quantity is divisible by
133, as desired. 39. Basis step: A1 ⊆ B1 tautologically im-
plies that

⋂1
j=1 Aj ⊆⋂1

j=1 Bj . Inductive step: Assume the
inductive hypothesis that if Aj ⊆ Bj for j = 1, 2, . . . , k,
then

⋂k
j=1 Aj ⊆⋂k

j=1 Bj . We want to show that if Aj ⊆ Bj

for j = 1, 2, . . . , k + 1, then
⋂k+1

j=1 Aj ⊆⋂k+1
j=1 Bj . Let x

be an arbitrary element of
⋂k+1

j=1 Aj =
(⋂k

j=1 Aj

)
∩ Ak+1.

Because x ∈ ⋂k
j=1 Aj , we know by the inductive hypothe-

sis that x ∈ ⋂k
j=1 Bj ; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-
fore, x ∈

(⋂k
j=1 Bj

)
∩Bk+1 =⋂k+1

j=1 Bj . 41. Let P(n) be
“(A1∪A2∪· · ·∪An)∩B = (A1∩B)∪(A2∩B)∪· · ·∪(An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume
that P(k) is true. Then (A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1) ∩ B =
[(A1∪A2∪· · ·∪Ak)∪Ak+1]∩B = [(A1∪A2∪· · ·∪Ak)∩
B] ∪ (Ak+1 ∩ B) = [(A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (Ak ∩
B)] ∪ (Ak+1 ∩ B) = (A1 ∩ B) ∪ (A2 ∩ B) ∪· · ·∪ (Ak ∩
B)∪ (Ak+1 ∩B). 43. Let P(n) be “

⋃n
k=1 Ak =⋂n

k=1 Ak .”
Basis step: P(1) is trivially true. Inductive step: Assume that

P(k) is true. Then
⋃k+1

j=1 Aj =
(⋃k

j=1 Aj

)
∪ Ak+1 =

(⋃k
j=1 Aj

)
∩ Ak+1 =

(⋂k
j=1 Aj

)
∩ Ak+1 = ⋂k+1

j=1 Aj .

45. Let P(n) be the statement that a set with n elements has
n(n− 1)/2 two-element subsets. P(2), the basis case, is true,
because a set with two elements has one subset with two
elements—namely, itself—and 2(2 − 1)/2 = 1. Now as-
sume that P(k) is true. Let S be a set with k + 1 elements.
Choose an element a in S and let T = S−{a}. A two-element
subset of S either contains a or does not. Those subsets not
containing a are the subsets of T with two elements; by the
inductive hypothesis there are k(k−1)/2 of these. There are k

subsets of S with two elements that contain a, because such a
subset contains a and one of the k elements in T . Hence, there
are k(k−1)/2+k = (k+1)k/2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if
necessary so that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xd . Place the first
tower at position t1 = x1+1. Assume tower k has been placed
at position tk . Then place tower k+1 at position tk+1 = x+1,
where x is the smallest xi greater than tk + 1. 49. The two
sets do not overlap if n+ 1 = 2. In fact, the conditional state-
ment P(1)→ P(2) is false. 51. The mistake is in applying
the inductive hypothesis to look at max(x−1, y−1), because
even though x and y are positive integers, x − 1 and y − 1
need not be (one or both could be 0). 53. For the basis step
(n = 2) the first person cuts the cake into two portions that she
thinks are each 1/2 of the cake, and the second person chooses
the portion he thinks is at least 1/2 of the cake (at least one of
the pieces must satisfy that condition). For the inductive step,
suppose there are k + 1 people. By the inductive hypothesis,
we can suppose that the first k people have divided the cake
among themselves so that each person is satisfied that he got
at least a fraction 1/k of the cake. Each of them now cuts his
or her piece into k+1 pieces of equal size. The last person gets
to choose one piece from each of the first k people’s portions.
After this is done, each of the first k people is satisfied that
she still has (1/k)(k/(k + 1)) = 1/(k + 1) of the cake. To
see that the last person is satisfied, suppose that he thought
that the ith person (1 ≤ i ≤ k) had a portion pi of the
cake, where

∑k
i=1 pi = 1. By choosing what he thinks is the

largest piece from each person, he is satisfied that he has at
least

∑k
i=1 pi/(k+1) = (1/(k+1))

∑k
i=1 pi = 1/(k+1) of

the cake. 55. We use the notation (i, j) to mean the square
in row i and column j and use induction on i+ j to show that
every square can be reached by the knight. Basis step: There
are six base cases, for the cases when i + j ≤ 2. The
knight is already at (0, 0) to start, so the empty sequence of
moves reaches that square. To reach (1, 0), the knight moves
(0, 0)→ (2, 1)→ (0, 2)→ (1, 0). Similarly, to reach (0, 1),
the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note
that the knight has reached (2, 0) and (0, 2) in the process.
For the last basis step there is (0, 0) → (1, 2) → (2, 0) →
(0, 1) → (2, 2) → (0, 3) → (1, 1). Inductive step: Assume
the inductive hypothesis, that the knight can reach any square
(i, j) for which i + j = k, where k is an integer greater
than 1. We must show how the knight can reach each square
(i, j) when i + j = k + 1. Because k + 1 ≥ 3, at least one
of i and j is at least 2. If i ≥ 2, then by the inductive hypoth-
esis, there is a sequence of moves ending at (i − 2, j + 1),
because i − 2 + j + 1 = i + j − 1 = k; from there
it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis
step: The base cases n = 0 and n = 1 are true because
the derivative of x0 is 0 and the derivative of x1 = x is 1.
Inductive step: Using the product rule, the inductive hypoth-
esis, and the basis step shows that d

dx
xk+1 = d

dx
(x · xk) =

x · d
dx

xk+xk d
dx

x = x ·kxk−1+xk ·1 = kxk+xk = (k+1)xk .
59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:
Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we
must show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from
Section 4.1, a · ak ≡ b · bk (mod m), which by defini-
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tion says that ak+1 ≡ bk+1 (mod m). 61. Let P(n) be
“[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)] →
[(p1 ∧ · · · ∧ pn−1)→ pn].” Basis step: P(2) is true because
(p1 → p2) → (p1 → p2) is a tautology. Inductive step:
Assume P(k) is true. To show [(p1 → p2) ∧ · · · ∧ (pk−1 →
pk) ∧ (pk → pk+1)] → [(p1 ∧ · · · ∧ pk−1 ∧ pk) → pk+1]
is a tautology, assume that the hypothesis of this conditional
statement is true. Because both the hypothesis and P(k) are
true, it follows that (p1 ∧ · · · ∧ pk−1) → pk is true. Be-
cause this is true, and because pk → pk+1 is true (it is part
of the assumption) it follows by hypothetical syllogism that
(p1 ∧ · · · ∧ pk−1) → pk+1 is true. The weaker statement
(p1 ∧ · · · ∧ pk−1 ∧ pk) → pk+1 follows from this. 63. We
will first prove the result when n is a power of 2, that is, if
n = 2k , k = 1, 2, . . . . Let P(k) be the statement A ≥ G,
where A and G are the arithmetic and geometric means, re-
spectively, of a set of n = 2k positive real numbers. Basis
step: k = 1 and n = 21 = 2. Note that (

√
a1 −√a2)

2 ≥ 0.
Expanding this shows that a1 − 2

√
a1a2 + a2 ≥ 0, that is,

(a1+ a2)/2 ≥ (a1a2)
1/2. Inductive step: Assume that P(k) is

true, with n = 2k . We will show that P(k+1) is true. We have
2k+1 = 2n. Now (a1 + a2 + · · · + a2n)/(2n) = [(a1 + a2 +
· · · + an)/n+ (an+1 + an+2 + · · · + a2n)/n]/2 and similarly
(a1a2 · · · a2n)

1/(2n) = [(a1 · · · an)
1/n(an+1 · · · a2n)

1/n]1/2. To
simplify the notation, let A(x, y, . . . ) and G(x, y, . . . ) denote
the arithmetic mean and geometric mean of x, y, . . . , respec-
tively. Also, if x ≤ x′, y ≤ y′, and so on, then A(x, y, . . . ) ≤
A(x′, y′, . . . ) and G(x, y, . . . ) ≤ G(x′, y′, . . . ). Hence,
A(a1, . . . , a2n) = A(A(a1, . . . , an), A(an+1, . . . , a2n)) ≥
A(G(a1, . . . , an), G(an+1, . . . , a2n)) ≥ G(G(a1, . . . , an),
G(an+1, . . . , a2n)) = G(a1, . . . , a2n). This finishes
the proof for powers of 2. Now if n is not a power
of 2, let m be the next higher power of 2, and let
an+1, . . . , am all equal A(a1, . . . , an) = a. Then we
have [(a1a2 · · · an)a

m−n]1/m ≤ A(a1, . . . , am), because m is
a power of 2. Because A(a1, . . . , am) = a, it follows
that (a1 · · · an)

1/ma1−n/m ≤ an/m. Raising both sides to the
(m/n)th power gives G(a1, . . . , an) ≤ A(a1, . . . , an).
65. Basis step: For n = 1, the left-hand side is just 1

1 , which
is 1. For n = 2, there are three nonempty subsets {1}, {2},
and {1, 2}, so the left-hand side is 1

1 + 1
2 + 1

1·2 = 2. Inductive
step: Assume that the statement is true for k. The set of the
first k + 1 positive integers has many nonempty subsets, but
they fall into three categories: a nonempty subset of the first
k positive integers together with k + 1, a nonempty subset of
the first k positive integers, or just {k + 1}. By the inductive
hypothesis, the sum of the first category is k. For the second
category, we can factor out 1/(k + 1) from each term of the
sum and what remains is just k by the inductive hypothesis,
so this part of the sum is k/(k + 1). Finally, the third cate-
gory simply yields 1/(k + 1). Hence, the entire summation
is k + k/(k + 1) + 1/(k + 1) = k + 1. 67. Basis step:
If A1 ⊆ A2, then A1 satisfies the condition of being a sub-
set of each set in the collection; otherwise A2 ⊆ A1, so A2
satisfies the condition. Inductive step: Assume the inductive
hypothesis, that the conditional statement is true for k sets,

and suppose we are given k + 1 sets that satisfy the given
conditions. By the inductive hypothesis, there must be a set
Ai for some i ≤ k such that Ai ⊆ Aj for 1 ≤ j ≤ k.
If Ai ⊆ Ak+1, then we are done. Otherwise, we know that
Ak+1 ⊆ Ai , and this tells us that Ak+1 satisfies the condition
of being a subset of Aj for 1 ≤ j ≤ k + 1. 69. G(1) = 0,
G(2) = 1, G(3) = 3, G(4) = 4 71. To show that 2n − 4
calls are sufficient to exchange all the gossip, select persons 1,
2, 3, and 4 to be the central committee. Every person outside
the central committee calls one person on the central commit-
tee. At this point the central committee members as a group
know all the scandals. They then exchange information among
themselves by making the calls 1-2, 3-4, 1-3, and 2-4 in that
order. At this point, every central committee member knows
all the scandals. Finally, again every person outside the central
committee calls one person on the central committee, at which
point everyone knows all the scandals. [The total number of
calls is (n− 4)+ 4+ (n− 4) = 2n− 4.] That this cannot be
done with fewer than 2n−4 calls is much harder to prove; see
Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.
Liestman, “A survey of gossiping and broadcasting in com-
munication networks,” Networks 18 (1988), no. 4, 319–349,
for details. 73. We prove this by mathematical induction.
The basis step (n = 2) is true tautologically. For n = 3,
suppose that the intervals are (a, b), (c, d), and (e, f ), where
without loss of generality we can assume that a ≤ c ≤ e.
Because (a, b)∩(e, f ) �= ∅, we must have e < b; for a similar
reason, e < d. It follows that the number halfway between e

and the smaller of b and d is common to all three intervals.
Now for the inductive step, assume that whenever we have k

intervals that have pairwise nonempty intersections then there
is a point common to all the intervals, and suppose that we are
given intervals I1, I2, . . . , Ik+1 that have pairwise nonempty
intersections. For each i from 1 to k, let Ji = Ii ∩ Ik+1. We
claim that the collection J1, J2, . . . , Jk satisfies the inductive
hypothesis, that is, that Ji1 ∩ Ji2 �= ∅ for each choice of sub-
scripts i1 and i2. This follows from the n = 3 case proved
above, using the sets Ii1 , Ii2 , and Ik+1. We can now invoke the
inductive hypothesis to conclude that there is a number com-
mon to all of the sets Ji for i = 1, 2, . . . , k, which perforce
is in the intersection of all the sets Ii for i = 1, 2, . . . , k + 1.
75. Pair up the people. Have the people stand at mutually dis-
tinct small distances from their partners but far away from
everyone else. Then each person throws a pie at his or her
partner, so everyone gets hit.

77.

79. Let P(n) be the statement that every 2n×2n×2n checker-
board with a 1× 1× 1 cube removed can be covered by tiles
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that are 2× 2× 2 cubes each with a 1× 1× 1 cube removed.
The basis step, P(1), holds because one tile coincides with the
solid to be tiled. Now assume that P(k) holds. Now consider a
2k+1×2k+1×2k+1 cube with a 1×1×1 cube removed. Split
this object into eight pieces using planes parallel to its faces
and running through its center. The missing 1 × 1 × 1 piece
occurs in one of these eight pieces. Now position one tile with
its center at the center of the large object so that the missing
1 × 1 × 1 cube lies in the octant in which the large object is
missing a 1×1×1 cube. This creates eight 2k×2k×2k cubes,
each missing a 1 × 1 × 1 cube. By the inductive hypothesis
we can fill each of these eight objects with tiles. Putting these
tilings together produces the desired tiling.
81.

83. Let Q(n) be P(n+b−1). The statement that P(n) is true
for n = b, b + 1, b + 2, . . . is the same as the statement that
Q(m) is true for all positive integers m. We are given that P(b)

is true [i.e., that Q(1) is true], and that P(k) → P(k + 1)

for all k ≥ b [i.e., that Q(m) → Q(m + 1) for all posi-
tive integers m]. Therefore, by the principle of mathematical
induction, Q(m) is true for all positive integers m.

Section 5.2

1. Basis step: We are told we can run one mile, so P(1) is
true. Inductive step: Assume the inductive hypothesis, that we
can run any number of miles from 1 to k. We must show that
we can run k + 1 miles. If k = 1, then we are already told
that we can run two miles. If k > 1, then the inductive hy-
pothesis tells us that we can run k − 1 miles, so we can run
(k − 1) + 2 = k + 1 miles. 3. a) P(8) is true, because we
can form 8 cents of postage with one 3-cent stamp and one
5-cent stamp. P(9) is true, because we can form 9 cents of
postage with three 3-cent stamps. P(10) is true, because we
can form 10 cents of postage with two 5-cent stamps. b) The
statement that using just 3-cent and 5-cent stamps we can form
j cents postage for all j with 8 ≤ j ≤ k, where we assume
that k ≥ 10 c) Assuming the inductive hypothesis, we can
form k + 1 cents postage using just 3-cent and 5-cent stamps
d) Because k ≥ 10, we know that P(k−2) is true, that is, that
we can form k−2 cents of postage. Put one more 3-cent stamp
on the envelope, and we have formed k + 1 cents of postage.
e) We have completed both the basis step and the inductive
step, so by the principle of strong induction, the statement is
true for every integer n greater than or equal to 8. 5. a) 4,
8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values
greater than or equal to 30 b) Let P(n) be the statement that

we can form n cents of postage using just 4-cent and 11-cent
stamps. We want to prove that P(n) is true for all n ≥ 30.
For the basis step, 30 = 11 + 11 + 4 + 4. Assume that
we can form k cents of postage (the inductive hypothesis);
we will show how to form k + 1 cents of postage. If the k

cents included an 11-cent stamp, then replace it by three 4-
cent stamps. Otherwise, k cents was formed from just 4-cent
stamps. Because k ≥ 30, there must be at least eight 4-cent
stamps involved. Replace eight 4-cent stamps by three 11-cent
stamps, and we have formed k + 1 cents in postage. c) P(n)

is the same as in part (b). To prove that P(n) is true for all
n ≥ 30, we check for the basis step that 30 = 11+11+4+4,
31 = 11+4+4+4+4+4, 32 = 4+4+4+4+4+4+4+4,
and 33 = 11+ 11+ 11. For the inductive step, assume the in-
ductive hypothesis, that P(j) is true for all j with 30 ≤ j ≤ k,
where k is an arbitrary integer greater than or equal to 33. We
want to show that P(k + 1) is true. Because k − 3 ≥ 30, we
know that P(k − 3) is true, that is, that we can form k − 3
cents of postage. Put one more 4-cent stamp on the envelope,
and we have formed k+ 1 cents of postage. In this proof, our
inductive hypothesis was that P(j) was true for all values of
j between 30 and k inclusive, rather than just that P(30) was
true. 7. We can form all amounts except $1 and $3. Let P(n)

be the statement that we can form n dollars using just 2-dollar
and 5-dollar bills. We want to prove that P(n) is true for all
n ≥ 5. (It is clear that $1 and $3 cannot be formed and that
$2 and $4 can be formed.) For the basis step, note that 5 = 5
and 6 = 2+2+2. Assume the inductive hypothesis, that P(j)

is true for all j with 5 ≤ j ≤ k, where k is an arbitrary integer
greater than or equal to 6. We want to show that P(k + 1) is
true. Because k−1 ≥ 5, we know that P(k−1) is true, that is,
that we can form k− 1 dollars. Add another 2-dollar bill, and
we have formed k+ 1 dollars. 9. Let P(n) be the statement
that there is no positive integer b such that

√
2 = n/b. Basis

step: P(1) is true because
√

2 > 1 ≥ 1/b for all positive
integers b. Inductive step: Assume that P(j) is true for all
j ≤ k, where k is an arbitrary positive integer; we prove that
P(k+1) is true by contradiction.Assume that

√
2 = (k+1)/b

for some positive integer b. Then 2b2 = (k+ 1)2, so (k+ 1)2

is even, and hence, k + 1 is even. So write k + 1 = 2t for
some positive integer t , whence 2b2 = 4t2 and b2 = 2t2. By
the same reasoning as before, b is even, so b = 2s for some
positive integer s. Then

√
2 = (k + 1)/b = (2t)/(2s) = t/s.

But t ≤ k, so this contradicts the inductive hypothesis, and
our proof of the inductive step is complete. 11. Basis step:
There are four base cases. If n = 1 = 4 ·0+1, then clearly the
second player wins. If there are two, three, or four matches
(n = 4·0+2, n = 4·0+3, or n = 4·1), then the first player can
win by removing all but one match. Inductive step: Assume
the strong inductive hypothesis, that in games with k or fewer
matches, the first player can win if k ≡ 0, 2, or 3 (mod 4) and
the second player can win if k ≡ 1 (mod 4). Suppose we have
a game with k+1 matches, with k ≥ 4. If k+1≡ 0 (mod 4),
then the first player can remove three matches, leaving k − 2
matches for the other player. Because k− 2 ≡ 1 (mod 4), by
the inductive hypothesis, this is a game that the second player
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at that point (who is the first player in our game) can win. Sim-
ilarly, if k + 1 ≡ 2 (mod 4), then the first player can remove
one match; and if k + 1 ≡ 3 (mod 4), then the first player
can remove two matches. Finally, if k+ 1 ≡ 1 (mod 4), then
the first player must leave k, k − 1, or k − 2 matches for the
other player. Because k ≡ 0 (mod 4), k − 1 ≡ 3 (mod 4),
and k − 2 ≡ 2 (mod 4), by the inductive hypothesis, this is
a game that the first player at that point (who is the second
player in our game) can win. 13. Let P(n) be the statement
that exactly n − 1 moves are required to assemble a puzzle
with n pieces. Now P(1) is trivially true. Assume that P(j)

is true for all j ≤ k, and consider a puzzle with k + 1 pieces.
The final move must be the joining of two blocks, of size j

and k + 1 − j for some integer j with 1 ≤ j ≤ k. By the
inductive hypothesis, it required j − 1 moves to construct the
one block, and k+ 1− j − 1 = k− j moves to construct the
other. Therefore, 1+(j−1)+(k−j) = k moves are required
in all, so P(k+ 1) is true. 15. Let the Chomp board have n

rows and n columns. We claim that the first player can win the
game by making the first move to leave just the top row and
leftmost column. Let P(n) be the statement that if a player
has presented his opponent with a Chomp configuration con-
sisting of just n cookies in the top row and n cookies in the
leftmost column, then he can win the game. We will prove
∀nP (n) by strong induction. We know that P(1) is true, be-
cause the opponent is forced to take the poisoned cookie at
his first turn. Fix k ≥ 1 and assume that P(j) is true for all
j ≤ k. We claim that P(k + 1) is true. It is the opponent’s
turn to move. If she picks the poisoned cookie, then the game
is over and she loses. Otherwise, assume she picks the cookie
in the top row in column j , or the cookie in the left column in
row j , for some j with 2 ≤ j ≤ k + 1. The first player now
picks the cookie in the left column in row j , or the cookie in
the top row in column j , respectively. This leaves the position
covered by P(j −1) for his opponent, so by the inductive hy-
pothesis, he can win. 17. Let P(n) be the statement that if a
simple polygon with n sides is triangulated, then at least two
of the triangles in the triangulation have two sides that border
the exterior of the polygon. We will prove ∀n ≥ 4 P(n). The
statement is clearly true for n = 4, because there is only one
diagonal, leaving two triangles with the desired property. Fix
k ≥ 4 and assume that P(j) is true for all j with 4 ≤ j ≤ k.
Consider a polygon with k + 1 sides, and some triangulation
of it. Pick one of the diagonals in this triangulation. First sup-
pose that this diagonal divides the polygon into one triangle
and one polygon with k sides. Then the triangle has two sides
that border the exterior. Furthermore, the k-gon has, by the
inductive hypothesis, two triangles that have two sides that
border the exterior of that k-gon, and only one of these trian-
gles can fail to be a triangle that has two sides that border the
exterior of the original polygon. The only other case is that
this diagonal divides the polygon into two polygons with j

sides and k + 3 − j sides for some j with 4 ≤ j ≤ k − 1.
By the inductive hypothesis, each of these two polygons has
two triangles that have two sides that border their exterior, and
in each case only one of these triangles can fail to be a trian-

gle that has two sides that border the exterior of the original
polygon. 19. Let P(n) be the statement that the area of a
simple polygon with n sides and vertices all at lattice points
is given by I (P ) + B(P )/2 − 1. We will prove P(n) for all
n ≥ 3. We begin with an additivity lemma: If P is a simple
polygon with all vertices at lattice points, divided into poly-
gons P1 and P2 by a diagonal, then I (P ) + B(P )/2 − 1 =
[I (P1)+ B(P1)/2 − 1] + [I (P2)+ B(P2)/2 − 1]. To prove
this, suppose there are k lattice points on the diagonal, not
counting its endpoints. Then I (P ) = I (P1)+ I (P2)+ k and
B(P ) = B(P1) + B(P2) − 2k − 2; and the result follows
by simple algebra. What this says in particular is that if Pick’s
formula gives the correct area for P1 and P2, then it must give
the correct formula for P , whose area is the sum of the areas
for P1 and P2; and similarly if Pick’s formula gives the correct
area for P and one of the Pi’s, then it must give the correct
formula for the other Pi . Next we prove the theorem for rect-
angles whose sides are parallel to the coordinate axes. Such a
rectangle necessarily has vertices at (a, b), (a, c), (d, b), and
(d, c), where a, b, c, and d are integers with b < c and a < d.
Its area is (c − b)(d − a). Also, B = 2(c − b + d − a) and
I = (c−b−1)(d−a−1)= (c−b)(d−a)−(c−b)−(d−a)+1.
Therefore, I + B/2− 1 = (c − b)(d − a)− (c − b)− (d −
a) + 1 + (c − b + d − a) − 1 = (c − b)(d − a), which is
the desired area. Next consider a right triangle whose legs are
parallel to the coordinate axes. This triangle is half a rectangle
of the type just considered, for which Pick’s formula holds, so
by the additivity lemma, it holds for the triangle as well. (The
values of B and I are the same for each of the two triangles,
so if Picks’s formula gave an answer that was either too small
or too large, then it would give a correspondingly wrong an-
swer for the rectangle.) For the next step, consider an arbitrary
triangle with vertices at lattice points that is not of the type al-
ready considered. Embed it in as small a rectangle as possible.
There are several possible ways this can happen, but in any
case (and adding one more edge in one case), the rectangle
will have been partitioned into the given triangle and two or
three right triangles with sides parallel to the coordinate axes.
Again by the additivity lemma, we are guaranteed that Pick’s
formula gives the correct area for the given triangle. This com-
pletes the proof of P(3), the basis step in our strong induction
proof. For the inductive step, given an arbitrary polygon, use
Lemma 1 in the text to split it into two polygons. Then by
the additivity lemma above and the inductive hypothesis, we
know that Pick’s formula gives the correct area for this poly-
gon. 21. a) In the left figure ∠abp is smallest, but bp is not
an interior diagonal. b) In the right figure bd is not an interior
diagonal. c) In the right figure bd is not an interior diagonal.
23. a) When we try to prove the inductive step and find a tri-
angle in each subpolygon with at least two sides bordering the
exterior, it may happen in each case that the triangle we are
guaranteed in fact borders the diagonal (which is part of the
boundary of that polygon). This leaves us with no triangles
guaranteed to touch the boundary of the original polygon.
b) We proved the stronger statement ∀n ≥ 4 T (n) in Exercise
17. 25. a) The inductive step here allows us to conclude that
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P(3), P(5), . . . are all true, but we can conclude nothing about
P(2), P(4), . . . . b) P(n) is true for all positive integers n, us-
ing strong induction. c) The inductive step here enables us to
conclude that P(2), P(4), P(8), P(16), …are all true, but we
can conclude nothing about P(n) when n is not a power of 2.
d) This is mathematical induction; we can conclude that P(n)

is true for all positive integers n. 27. Suppose, for a proof
by contradiction, that there is some positive integer n such that
P(n) is not true. Let m be the smallest positive integer greater
than n for which P(m) is true; we know that such an m exists
because P(m) is true for infinitely many values of m. But we
know that P(m)→ P(m−1), so P(m−1) is also true. Thus,
m− 1 cannot be greater than n, so m− 1 = n and P(n) is in
fact true. This contradiction shows that P(n) is true for all n.
29. The error is in going from the base case n = 0 to the next
case, n = 1; we cannot write 1 as the sum of two smaller
natural numbers. 31. Assume that the well-ordering prop-
erty holds. Suppose that P(1) is true and that the conditional
statement [P(1)∧P(2)∧ · · ·∧P(n)] → P(n+ 1) is true for
every positive integer n. Let S be the set of positive integers
n for which P(n) is false. We will show S = ∅. Assume that
S �= ∅. Then by the well-ordering property there is a least
integer m in S. We know that m cannot be 1 because P(1) is
true. Because n = m is the least integer such that P(n) is false,
P(1), P (2), . . . , P (m− 1) are true, and m− 1 ≥ 1. Because
[P(1) ∧ P(2) ∧ · · · ∧ P(m− 1)] → P(m) is true, it follows
that P (m) must also be true, which is a contradiction. Hence,
S = ∅. 33. In each case, give a proof by contradiction based
on a “smallest counterexample,” that is, values of n and k such
that P(n, k) is not true and n and k are smallest in some sense.
a) Choose a counterexample with n+ k as small as possible.
We cannot have n = 1 and k = 1, because we are given
that P(1, 1) is true. Therefore, either n > 1 or k > 1. In the
former case, by our choice of counterexample, we know that
P(n− 1, k) is true. But the inductive step then forces P(n, k)

to be true, a contradiction.The latter case is similar. So our
supposition that there is a counterexample mest be wrong,
and P(n, k) is true in all cases. b) Choose a counterexample
with n as small as possible. We cannot have n = 1, because
we are given that P(1, k) is true for all k. Therefore, n > 1.
By our choice of counterexample, we know that P(n− 1, k)

is true. But the inductive step then forces P(n, k) to be true,
a contradiction. c) Choose a counterexample with k as small
as possible. We cannot have k = 1, because we are given that
P(n, 1) is true for all n. Therefore, k > 1. By our choice of
counterexample, we know that P(n, k − 1) is true. But the
inductive step then forces P (n, k) to be true, a contradiction.
35. Let P(n) be the statement that if x1, x2, . . . , xn are n dis-
tinct real numbers, then n− 1 multiplications are used to find
the product of these numbers no matter how parentheses are
inserted in the product. We will prove that P(n) is true using
strong induction. The basis case P(1) is true because 1−1 = 0
multiplications are required to find the product of x1, a product
with only one factor. Suppose that P(k) is true for 1 ≤ k ≤ n.
The last multiplication used to find the product of the n + 1
distinct real numbers x1, x2, . . . , xn, xn+1 is a multiplication

of the product of the first k of these numbers for some k and
the product of the last n + 1 − k of them. By the inductive
hypothesis, k − 1 multiplications are used to find the product
of k of the numbers, no matter how parentheses were inserted
in the product of these numbers, and n− k multiplications are
used to find the product of the other n + 1 − k of them, no
matter how parentheses were inserted in the product of these
numbers. Because one more multiplication is required to find
the product of all n + 1 numbers, the total number of multi-
plications used equals (k − 1) + (n − k) + 1 = n. Hence,
P(n + 1) is true. 37. Assume that a = dq + r = dq ′ + r ′
with 0 ≤ r < d and 0 ≤ r ′ < d. Then d(q − q ′) = r ′ − r .
It follows that d divides r ′ − r . Because −d < r ′ − r < d ,
we have r ′ − r = 0. Hence, r ′ = r . It follows that q = q ′.
39. This is a paradox caused by self-reference. The answer is
clearly “no.” There are a finite number of English words, so
only a finite number of strings of 15 words or fewer; there-
fore, only a finite number of positive integers can be so de-
scribed, not all of them. 41. Suppose that the well-ordering
property were false. Let S be a nonempty set of nonnegative
integers that has no least element. Let P(n) be the statement
“i �∈ S for i = 0, 1, . . . , n.” P(0) is true because if 0 ∈ S then
S has a least element, namely, 0. Now suppose that P(n) is
true. Thus, 0 �∈ S, 1 �∈ S, . . . , n �∈ S. Clearly, n+ 1 cannot be
in S, for if it were, it would be its least element. Thus P(n+1)

is true. So by the principle of mathematical induction, n �∈ S

for all nonnegative integers n. Thus, S = ∅, a contradiction.
43. Strong induction implies the principle of mathematical in-
duction, for if one has shown that P(k) → P(k + 1) is true,
then one has also shown that [P(1)∧· · ·∧P(k)] → P(k+1) is
true. By Exercise 41, the principle of mathematical induction
implies the well-ordering property. Therefore by assuming
strong induction as an axiom, we can prove the well-ordering
property.

Section 5.3

1. a) f (1) = 3, f (2) = 5, f (3) = 7, f (4) = 9 b) f (1) = 3,
f (2) = 9, f (3) = 27, f (4) = 81 c) f (1) = 2, f (2) = 4,
f (3) = 16, f (4) = 65,536 d) f (1) = 3, f (2) = 13, f (3)=
183, f (4) = 33,673 3. a) f (2) = −1, f (3) = 5, f (4) = 2,
f (5)= 17 b) f (2)=−4,f (3)= 32,f (4)=−4096,f (5)=
536,870,912 c) f (2) = 8, f (3) = 176, f (4) =92,672,
f (5) = 25,764, 174, 848 d) f (2) = − 1

2 , f (3) = −4,
f (4) = 1

8 , f (5) = −32 5. a) Not valid b) f (n) =
1 − n. Basis step: f (0) = 1 = 1 − 0. Inductive step: if
f (k) = 1− k, then f (k + 1) = f (k)− 1 = 1− k − 1 = 1−
(k + 1). c) f (n) = 4 − n if n > 0, and f (0) = 2. Basis
step: f (0) = 2 and f (1) = 3 = 4 − 1. Inductive step (with
k ≥ 1): f (k + 1) = f (k)− 1 = (4− k)− 1 = 4− (k + 1).
d) f (n) = 2�(n+1)/2�. Basis step: f (0) = 1 = 2�(0+1)/2�
and f (1) = 2 = 2�(1+1)/2�. Inductive step (with k ≥ 1):
f (k+1)= 2f (k−1)= 2·2�k/2� = 2�k/2�+1 = 2�((k+1)+1)/2�.
e) f (n) = 3n. Basis step: Trivial. Inductive step: For odd
n, f (n) = 3f (n − 1) = 3 · 3n−1 = 3n; and for even
n > 1, f (n) = 9f (n − 2) = 9 · 3n−2 = 3n. 7. There



Answers to Odd-Numbered Exercises S-35

are many possible correct answers. We will supply relatively
simple ones. a) an+1 = an + 6 for n ≥ 1 and a1 = 6
b) an+1 = an + 2 for n ≥ 1 and a1 = 3 c) an+1 = 10an

for n ≥ 1 and a1 = 10 d) an+1 = an for n ≥ 1 and
a1 = 5 9. F(0) = 0, F (n) = F(n − 1) + n for n ≥ 1
11. Pm(0) = 0, Pm(n + 1) = Pm(n) + m 13. Let P(n)

be “f1 + f3 + · · · + f2n−1 = f2n.” Basis step: P(1) is
true because f1 = 1 = f2. Inductive step: Assume that
P(k) is true. Then f1 + f3 + · · · + f2k−1 + f2k+1 =
f2k + f2k+1 = f2k+2 + f2(k+1). 15. Basis step:
f0f1 + f1f2 = 0 · 1 + 1 · 1 = 12 = f 2

2 . Inductive
step: Assume that f0f1 + f1f2 + · · · + f2k−1f2k = f 2

2k .
Then f0f1 + f1f2 + · · · + f2k−1f2k + f2kf2k+1 +
f2k+1f2k+2 = f 2

2k + f2kf2k+1 + f2k+1f2k+2 =
f2k(f2k+f2k+1)+ f2k+1f2k+2 = f2kf2k+2+f2k+1f2k+2 =
(f2k + f2k+1)f2k+2 = f 2

2k+2. 17. The number of divisions
used by the Euclidean algorithm to find gcd(fn+1, fn) is 0 for
n = 0, 1 for n = 1, and n−1 for n ≥ 2. To prove this result for
n ≥ 2 we use mathematical induction. For n = 2, one division
shows that gcd(f3, f2) = gcd(2, 1) = gcd(1, 0) = 1. Now
assume that k − 1 divisions are used to find gcd(fk+1, fk).
To find gcd(fk+2, fk+1), first divide fk+2 by fk+1 to ob-
tain fk+2 = 1 · fk+1 + fk . After one div- ision we
have gcd(fk+2, fk+1) = gcd(fk+1, fk). By the induc-
tive hypothesis it follows that exactly k − 1 more di-
visions are required. This shows that k divisions are re-
quired to find gcd(fk+2, fk+1), finishing the inductive proof.
19. |A| = −1. Hence, |An| = (−1)n. It follows that
fn+1fn−1 − f 2

n = (−1)n. 21. a) Proof by induction. Ba-
sis step: For n = 1, max(−a1) = −a1 = − min(a1).
For n = 2, there are two cases. If a2 ≥ a1, then
−a1 ≥ −a2, so max(−a1,−a2) = −a1 = −min(a1, a2).
If a2 < a1, then −a1 < −a2, so max(−a1, −a2) =
−a2 = − min(a1, a2). Inductive step: Assume true for
k with k ≥ 2. Then max(−a1, −a2, . . . , −ak, −ak+1) =
max(max(−a1, . . . ,−ak),−ak+1)=max(−min(a1, . . . , ak),
−ak+1) = −min(min(a1, . . . , ak), ak+1) = −min(a1, . . . ,

ak+1). b) Proof by mathematical induction. Basis step: For
n = 1, the result is the identity a1 + b1 = a1 + b1. For
n = 2, first consider the case in which a1 + b1 ≥ a2 + b2.
Then max(a1 + b1, a2 + b2) = a1 + b1. Also note
that a1 ≤ max(a1, a2) and b1 ≤ max(b1, b2), so
a1 + b1 ≤ max(a1, a2) + max(b1, b2). Therefore,
max(a1+b1, a2+b2)= a1+b1 ≤max(a1, a2)+max(b1, b2).
The case with a1 + b1 < a2 + b2 is similar. In-
ductive step: Assume that the result is true for k. Then
max(a1 + b1, a2 + b2, . . . , ak + bk, ak+1 + bk+1) =
max(max(a1 + b1, a2 + b2, . . . , ak + bk), ak+1 +
bk+1) ≤ max(max(a1, a2, . . . , ak) + max(b1, b2, . . . , bk),
ak+1 + bk+1) ≤ max(max(a1, a2, . . . , ak),
ak+1) + max(max(b1, b2, . . . , bk), bk+1) =
max(a1, a2, . . . , ak, ak+1) + max(b1, b2, . . . , bk, bk+1).
c) Same as part (b), but replace every occurrence of “max” by
“min” and invert each inequality. 23. 5 ∈ S, and x + y ∈ S

if x, y ∈ S. 25. a) 0 ∈ S, and if x ∈ S, then x + 2 ∈ S

and x − 2 ∈ S. b) 2 ∈ S, and if x ∈ S, then x + 3 ∈ S.

c) 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, and if x ∈ S, then x + 5 ∈ S.
27. a) (0, 1), (1, 1), (2, 1); (0, 2), (1, 2), (2, 2), (3, 2), (4, 2);
(0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3); (0, 4), (1, 4),
(2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4) b) Let P(n)

be the statement that a ≤ 2b whenever (a, b) ∈ S is obtained
by n applications of the recursive step. Basis step: P(0) is true,
because the only element of S obtained with no applications
of the recursive step is (0, 0), and indeed 0 ≤ 2 · 0. Inductive
step: Assume that a ≤ 2b whenever (a, b) ∈ S is obtained
by k or fewer applications of the recursive step, and consider
an element obtained with k + 1 applications of the recursive
step. Because the final application of the recursive step to
an element (a, b) must be applied to an element obtained
with fewer applications of the recursive step, we know that
a ≤ 2b. Add 0 ≤ 2, 1 ≤ 2, and 2 ≤ 2, respectively, to obtain
a ≤ 2(b + 1), a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1), as
desired. c) This holds for the basis step, because 0 ≤ 0. If this
holds for (a, b), then it also holds for the elements obtained
from (a, b) in the recursive step, because adding 0 ≤ 2, 1 ≤ 2,
and 2 ≤ 2, respectively, to a ≤ 2b yields a ≤ 2(b + 1),
a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1). 29. a) Define
S by (1, 1) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S,
(a, b + 2) ∈ S, and (a + 1, b + 1) ∈ S. All elements put
in S satisfy the condition, because (1, 1) has an even sum of
coordinates, and if (a, b) has an even sum of coordinates, then
so do (a+2, b), (a, b+2), and (a+1, b+1). Conversely, we
show by induction on the sum of the coordinates that if a+ b

is even, then (a, b) ∈ S. If the sum is 2, then (a, b) = (1, 1),
and the basis step put (a, b) into S. Otherwise the sum is
at least 4, and at least one of (a − 2, b), (a, b − 2), and
(a − 1, b − 1) must have positive integer coordinates whose
sum is an even number smaller than a+b, and therefore must
be in S. Then one application of the recursive step shows that
(a, b) ∈ S. b) Define S by (1, 1), (1, 2), and (2, 1) are in S,
and if (a, b) ∈ S, then (a + 2, b) and (a, b + 2) are in S. To
prove that our definition works, we note first that (1, 1), (1, 2),
and (2, 1) all have an odd coordinate, and if (a, b) has an odd
coordinate, then so do (a + 2, b) and (a, b + 2). Conversely,
we show by induction on the sum of the coordinates that if
(a, b) has at least one odd coordinate, then (a, b) ∈ S. If
(a, b) = (1, 1) or (a, b) = (1, 2) or (a, b) = (2, 1), then
the basis step put (a, b) into S. Otherwise either a or b is
at least 3, so at least one of (a − 2, b) and (a, b − 2) must
have positive integer coordinates whose sum is smaller than
a + b, and therefore must be in S. Then one application of
the recursive step shows that (a, b) ∈ S. c) (1, 6) ∈ S and
(2, 3) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S and
(a, b + 6) ∈ S. To prove that our definition works, we note
first that (1, 6) and (2, 3) satisfy the condition, and if (a, b)

satisfies the condition, then so do (a + 2, b) and (a, b + 6).
Conversely we show by induction on the sum of the coordi-
nates that if (a, b) satisfies the condition, then (a, b) ∈ S.
For sums 5 and 7, the only points are (1, 6), which the basis
step put into S, (2, 3), which the basis step put into S, and
(4, 3) = (2 + 2, 3), which is in S by one application of the
recursive definition. For a sum greater than 7, either a ≥ 3, or
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a ≤ 2 and b ≥ 9, in which case either (a− 2, b) or (a, b− 6)

must have positive integer coordinates whose sum is smaller
than a + b and satisfy the condition for being in S. Then
one application of the recursive step shows that (a, b) ∈ S.
31. If x is a set or a variable representing a set, then x is a
well-formed formula. If x and y are well-formed formulae,
then so are x, (x ∪ y), (x ∩ y), and (x − y). 33. a) If
x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x; if
s = tx, where t ∈ D∗ and x ∈ D, then m(s) = min(m(s), x).
b) Let t = wx, where w ∈ D∗ and x ∈ D. If w = λ, then
m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by
the recursive step and the basis step of the definition of m.
Otherwise, m(st) = m((sw)x) = min(m(sw), x) by the
definition of m. Now m(sw) = min(m(s), m(w)) by the
inductive hypothesis of the structural induction, so m(st) =
min(min(m(s), m(w)), x) = min(m(s), min(m(w), x)) by
the meaning of min. But min(m(w), x) = m(wx) = m(t)

by the recursive step of the definition of m. Thus, m(st) =
min(m(s), m(t)). 35. λR = λ and (ux)R = xuR for x ∈ 	,
u ∈ 	∗. 37. w0 = λ and wn+1 = wwn. 39. When the
string consists of n 0s followed by n 1s for some non- negative
integer n 41. Let P(i) be “l(wi ) = i · l(w).” P(0) is true
because l(w0) = 0 = 0 · l(w). Assume P(i) is true. Then
l(wi+1) = l(wwi ) = l(w) + l(wi ) = l(w) + i · l(w) =
(i + 1) · l(w). 43. Basis step: For the full binary tree con-
sisting of just a root the result is true because n(T ) = 1
and h(T ) = 0, and 1 ≥ 2 · 0 + 1. Inductive step: As-
sume that n(T1) ≥ 2h(T1) + 1 and n(T2) ≥ 2h(T2) + 1.
By the recursive definitions of n(T ) and h(T ), we have
n(T ) = 1+n(T1)+n(T2) and h(T ) = 1+max(h(T1), h(T2)).
Therefore n(T ) = 1 + n(T1) + n(T2) ≥ 1 + 2h(T1) +
1 + 2h(T2) + 1 ≥ 1 + 2 · max(h(T1), h(T2)) + 2 =
1 + 2(max(h(T1), h(T2)) + 1) = 1 + 2h(T ). 45. Basis
step: a0,0 = 0 = 0 + 0. Inductive step: Assume that
am′,n′ = m′ + n′ whenever (m′, n′) is less than (m, n)

in the lexicographic ordering of N × N. If n = 0 then
am,n = am−1,n + 1 = m − 1 + n + 1 = m + n. If n > 0,
then am,n = am,n−1 + 1 = m + n − 1 + 1 = m + n.
47. a) Pm,m = Pm because a number exceeding m cannot be
used in a partition of m. b) Because there is only one way to
partition 1, namely, 1 = 1, it follows that P1,n = 1. Because
there is only one way to partition m into 1s, Pm,1 = 1. When
n > m it follows that Pm,n = Pm,m because a number exceed-
ing m cannot be used. Pm,m = 1+Pm,m−1 because one extra
partition, namely, m = m, arises when m is allowed in the par-
tition. Pm,n = Pm,n−1+Pm−n,n if m > n because a partition of
m into integers not exceeding n either does not use any ns and
hence, is counted in Pm,n−1 or else uses an n and a partition of
m− n, and hence, is counted in Pm−n,n. c) P5 = 7, P6 = 11
49. Let P(n) be “A(n, 2) = 4.” Basis step: P(1) is true
because A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 2 · 2 = 4.
Inductive step: Assume that P(n) is true, that is, A(n, 2) = 4.
Then A(n + 1, 2) = A(n, A(n + 1, 1)) = A(n, 2) = 4.
51. a) 16 b) 65,536 53. Use a double induction argument
to prove the stronger statement: A(m, k) > A(m, l) when
k > l. Basis step: When m = 0 the statement is true because

k > l implies that A(0, k) = 2k > 2l = A(0, l). Inductive
step: Assume that A(m, x) > A(m, y) for all nonnegative
integers x and y with x > y. We will show that this implies
that A(m + 1, k) > A(m + 1, l) if k > l. Basis steps: When
l = 0 and k > 0, A(m+ 1, l) = 0 and either A(m+ 1, k) = 2
or A(m + 1, k) = A(m, A(m + 1, k − 1)). If m = 0,
this is 2A(1, k − 1) = 2k . If m > 0, this is greater than 0
by the inductive hypothesis. In all cases, A(m + 1, k) > 0,
and in fact, A(m + 1, k) ≥ 2. If l = 1 and k > 1, then
A(m+ 1, l) = 2 and A(m+ 1, k) = A(m, A(m+ 1, k− 1)),
with A(m + 1, k − 1) ≥ 2. Hence, by the inductive hypoth-
esis, A(m, A(m + 1, k − 1)) ≥ A(m, 2) > A(m, 1) = 2.
Inductive step: Assume that A(m + 1, r) > A(m + 1, s) for
all r > s, s = 0, 1, . . . , l. Then if k+1 > l+1 it follows that
A(m+1, k+1) = A(m, A(m+1, k)) > A(m, A(m+1, k)) =
A(m + 1, l + 1). 55. From Exercise 54 it follows that
A(i, j) ≥ A(i − 1, j) ≥ · · · ≥ A(0, j) = 2j ≥ j .
57. Let P(n) be “F(n) is well-defined.” Then P(0) is true
because F(0) is specified. Assume that P(k) is true for all
k < n. Then F(n) is well-defined at n because F(n) is
given in terms of F(0), F (1), . . . , F (n− 1). So P(n) is true
for all integers n. 59. a) The value of F(1) is ambiguous.
b) F(2) is not defined because F(0) is not defined. c) F(3)

is ambiguous and F(4) is not defined because F( 4
3 ) makes

no sense. d) The definition of F(1) is ambiguous because
both the second and third clause seem to apply. e) F(2)

cannot be computed because trying to compute F(2) gives
F(2) = 1+ F(F(1)) = 1+ F(2). 61. a) 1 b) 2 c) 3

d) 3 e) 4 f) 4 g) 5 63. f ∗0 (n) = �n/a� 65. f ∗2 (n) =
�log log n� for n ≥ 2, f ∗2 (1) = 0

Section 5.4

1. First, we use the recursive step to write 5! = 5 · 4!. We
then use the recursive step repeatedly to write 4! = 4 · 3!,
3! = 3 · 2!, 2! = 2 · 1!, and 1! = 1 · 0!. Inserting the value
of 0! = 1, and working back through the steps, we see that
1! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 = 6,
4! = 4 · 3! = 4 · 6 = 24, and 5! = 5 · 4! = 5 · 24 = 120.
3. With this input, the algorithm uses the else clause to find
that gcd(8, 13) = gcd(13 mod 8, 8) = gcd(5, 8). It uses this
clause again to find that gcd(5, 8) = gcd(8 mod 5, 5) =
gcd(3, 5), then to get gcd(3, 5) = gcd(5 mod 3, 3) =
gcd(2, 3), then gcd(2, 3) = gcd(3 mod 2, 2) = gcd(1, 2),
and once more to get gcd(1, 2) = gcd(2 mod 1, 1) =
gcd(0, 1). Finally, to find gcd(0, 1) it uses the first step
with a = 0 to find that gcd(0, 1) = 1. Consequently,
the algorithm finds that gcd(8, 13) = 1. 5. First, be-
cause n = 11 is odd, we use the else clause to see
that mpower(3, 11, 5) = (mpower (3, 5, 5)2 mod 5 ·
3 mod 5) mod 5. We next use the else clause again to see
that mpower (3, 5, 5) = (mpower (3, 2, 5)2 mod 5 · 3
mod 5) mod 5. Then we use the else if clause to see
that mpower (3, 2, 5) = mpower (3, 1, 5)2 mod 5. Us-
ing the else clause again, we have mpower (3, 1, 5) =
(mpower (3, 0, 5)2 mod 5 · 3 mod 5) mod 5. Finally, us-


