whichever is in shorter supply) so that the number of men and the number of women become the same, and put these fictitious people at the bottom of everyone's preference lists. c) This follows immediately from Exercise 63 in Section 3.1. **37.** 5; 15 **39.** The first situation in Exercise 37 **41.** a) For each subset S of $\{1, 2, ..., n\}$, compute $\sum_{i \in S} w_i$. Keep track of the subset giving the largest such sum that is less than or equal to W, and return that subset as the output of the algorithm. b) The food pack and the portable stove **43**. a) The makespan is always at least as large as the load on the processor assigned to do the lengthiest job, which must be at least $\max_{i=1,2,\dots,n} t_i$. Therefore the minimum makespan satisfies this inequality. b) The total amount of time the processors need to spend working on the jobs (the total load) is $\sum_{i=1}^{n} t_i$. Therefore the average load per processor is $\frac{1}{p} \sum_{j=1}^{n} t_j$. The maximum load cannot be any smaller than the average, so the minimum makespan is always at least this large. 45. Processor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No **3.** Suppose that $a \mid b$. Then there exists an integer k such that ka = b. Because a(ck) = bcit follows that $a \mid bc$. **5.** If $a \mid b$ and $b \mid a$, there are integers c and d such that b = ac and a = bd. Hence, a = acd. Because $a \neq 0$ it follows that cd = 1. Thus either c = d = 1or c = d = -1. Hence, either a = b or a = -b. 7. Because $ac \mid bc$ there is an integer k such that ack = bc. Hence, ak = b, so $a \mid b$. **9.** a) 2, 5 b) -11, 10 c) 34, 7 d) 77, 0 e) 0, 0 **f**) 0, 3 **g**) -1, 2 **h**) 4, 0 **11. a**) 7:00 **b**) 8:00 **c**) 10:00 **13.** a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 **15.** If $a \mod m =$ $b \mod m$, then a and b have the same remainder when divided by m. Hence, $a = q_1m + r$ and $b = q_2m + r$, where $0 \le r < m$. It follows that $a - b = (q_1 - q_2)m$, so $m \mid (a - b)$. It follows that $a \equiv b \pmod{m}$. 17. There is some b with (b-1)k < n < bk. Hence, (b-1)k < n-1 < bk. Divide by k to obtain $b - 1 < n/k \le b$ and $b - 1 \le (n - 1)/k < b$. Hence, $\lceil n/k \rceil = b$ and |(n-1)/k| = b - 1. **19.** *x* mod *m* if $x \mod m < \lfloor m/2 \rfloor$ and $(x \mod m) - m$ if $x \mod m > m$ [m/2] **21. a**) 1 **b**) 2 **c**) 3 **d**) 9 **23. a**) 1, 109 **b**) 40, 89 c) -31,222 d) -21,38259 **25.** a) -15 b) -7 c) 140 **27.** -1, -26, -51, -76, 24, 49, 74, 99 **29. a**) No **b**) No c) Yes d) No **31.** a) 13 a) 6 **33.** a) 9 b) 4 c) 25 d) 0 35. Let m = tn. Because $a \equiv b \pmod{m}$ there exists an integer s such that a = b + sm. Hence, a = b + (st)n, so $a \equiv b \pmod{n}$. **37.** a) Let m = c = 2, a = 0, and b = 1. Then $0 = ac \equiv bc = 2 \pmod{2}$, but $0 = a \neq b = 1 \pmod{2}$. **b**) Let m = 5, a = b = 3, c = 1, and d = 6. Then $3 \equiv 3 \pmod{5}$ and $1 \equiv 6 \pmod{5}$, but $3^1 = 3 \neq 4 \equiv 729 = 3^6 \pmod{5}$. **39.** By Exercise 38 the sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1, or 1 + 1 = 2, modulo 4, never 3, and therefore not of the form 4k + 3. **41.** Because $a \equiv b \pmod{m}$, there exists an

integer s such that a = b + sm, so a - b = sm. Then $a^{k} - b^{k} = (a - b)(a^{k-1} + a^{k-2}b + \dots + ab^{k-2} + b^{k-1}),$ $k \ge 2$, is also a multiple of *m*. It follows that $a^k \equiv b^k \pmod{m}$. **43.** To prove closure, note that $a \cdot_m b = (a \cdot b) \mod m$, which by definition is an element of \mathbf{Z}_m . Multiplication is associative because $(a \cdot_m b) \cdot_m c$ and $a \cdot_m (b \cdot_m c)$ both equal $(a \cdot b \cdot c) \mod m$ and multiplication of integers is associative. Similarly, multiplication in \mathbf{Z}_m is commutative because multiplication in Z is commutative, and 1 is the multiplicative identity for \mathbf{Z}_m because 1 is the multiplicative identity for \mathbf{Z} . **45.** $0+_{5}0 = 0$, $0+_{5}1 = 1$, $0+_{5}2 = 2$, $0+_{5}3 = 3$, $0+_{5}4 = 1$ 4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3and 0.50 = 0, 0.51 = 0, 0.52 = 0, 0.53 = 0, 0.54 = 0; 1.51 = 0 $1, 1 \cdot 52 = 2, 1 \cdot 53 = 3, 1 \cdot 54 = 4; 2 \cdot 52 = 4, 2 \cdot 53 = 1, 2 \cdot 54 = 1$ $3; 3 \cdot 5^3 = 4, 3 \cdot 5^4 = 2; 4 \cdot 5^4 = 1$ 47. f is onto but not one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111 11010110 1100 **3.** a) 31 b) 513 c) 341 d) 26,896 **5.** a) 1 0111 1010 **b**) 11 1000 0100 **c**) 1 0001 0011 **d**) 101 0000 1111 **7. a**) 1000 0000 1110 **b**) 1 0011 0101 1010 1011 c) 10101011 1011 1010 d) 1101 1110 1111 1010 11001110 1101 **9.** 1010 1011 1100 1101 1110 1111 **11.** (B7B)₁₆ **13.** Adding up to three leading 0s if necessary, write the binary expansion as $(\dots b_{23}b_{22}b_{21}b_{20}b_{13}b_{12}b_{11}b_{10}b_{03}b_{02}b_{01}b_{00})_2$. The value of this numeral is $b_{00} + 2b_{01} + 4b_{02} + 8b_{03} + b_{03} + b_{03$ $2^{4}b_{10} + 2^{5}b_{11} + 2^{6}b_{12} + 2^{7}b_{13} + 2^{8}b_{20} + 2^{9}b_{21} + 2^{10}b_{22} +$ $2^{11}b_{23} + \cdots$, which we can rewrite as $b_{00} +$ $2b_{01} + 4b_{02} + 8b_{03} + (b_{10} + 2b_{11} + 4b_{12} + 8b_{13})$ $2^4 + (b_{20} + 2b_{21} + 4b_{22} + 8b_{23}) \cdot 2^8 + \cdots$ Now $(b_{i3}b_{i2}b_{i1}b_{i0})_2$ translates into the hexadecimal digit h_i . So our number is $h_0 + h_1 \cdot 2^4 + h_2 \cdot 2^8 + \cdots =$ $h_0 + h_1 \cdot 16 + h_2 \cdot 16^2 + \cdots$, which is the hexadecimal expansion $(\dots h_1h_1h_0)_{16}$. **15** Adding up to two leading 0s if necessary, write the binary expansion as $(\dots b_{22}b_{21}b_{20}b_{12}b_{11}b_{10}b_{02}b_{01}b_{00})_2$. The value of this numeral is $b_{00} + 2b_{01} + 4b_{02} + 2^3b_{10} + 2^4b_{11} + 2^5b_{12} + 2^6b_{20} + 2^$ $2^{7}b_{21} + 2^{8}b_{22} + \cdots$, which we can rewrite as $b_{00} + 2b_{01} + b_{01}$ $4b_{02} + (b_{10} + 2b_{11} + 4b_{12}) \cdot 2^3 + (b_{20} + 2b_{21} + 4b_{22}) \cdot 2^6 + \cdots$ Now $(b_{i2}b_{i1}b_{i0})_2$ translates into the octal digit h_i . So our number is $h_0 + h_1 \cdot 2^3 + h_2 \cdot 2^6 + \dots = h_0 + h_1 \cdot 8 + h_2 \cdot 8^2 + \dots$, which is the octal expansion $(\dots h_1h_1h_0)_8$. **17.** 1 1101 $1100\ 1010\ 1101\ 0001,\ 1273)_8$ **19.** Convert the given octal numeral to binary, then convert from binary to hexadecimal using Example 7. **21. a)** 1011 1110, 10 0001 0000 0001 **b**) 1 1010 1100, 1011 0000 0111 0011 **c**) 100 1001 1010, 101 0010 1001 0110 0000 **d**) 110 0000 0000, 1000 0000 0001 1111 1111 **23.** a) 1132, 144,305 b) 6273, 2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216 **25.** 436 **27.** 27 **29.** The binary expansion of the integer is the unique such sum. **31.** Let $a = (a_{n-1}a_{n-2} \dots a_1a_0)_{10}$. Then $a = 10^{n-1}a_{n-1} + 10^{n-2}a_{n-2} + \dots + 10a_1 + a_0$ $\equiv a_{n-1} + a_{n-2} + \cdots + a_1 + a_0 \pmod{3}$, because

 $10^j \equiv 1 \pmod{3}$ for all nonnegative integers j. It follows that $3 \mid a$ if and only if 3 divides the sum of the decimal digits of a. **33.** Let $a = (a_{n-1}a_{n-2} \dots a_1a_0)_2$. Then $a = a_0 + 2a_1 + 2^2a_2 + \dots + 2^{n-1}a_{n-1} \equiv a_0 - a_1 + a_2 - a_n$ $a_3 + \cdots \pm a_{n-1} \pmod{3}$. It follows that a is divisible by 3 if and only if the sum of the binary digits in the evennumbered positions minus the sum of the binary digits in the odd-numbered positions is divisible by 3. 35. a) - 6 b) 13c) -14 d) 0 37. The one's complement of the sum is found by adding the one's complements of the two integers except that a carry in the leading bit is used as a carry to the last bit of the sum. **39.** If $m \ge 0$, then the leading bit a_{n-1} of the one's complement expansion of m is 0 and the formula reads $m = \sum_{i=0}^{n-2} a_i 2^i$. This is correct because the right-hand side is the binary expansion of m. When m is negative, the leading bit a_{n-1} of the one's complement expansion of m is 1. The remaining n-1 bits can be obtained by subtracting -m from 111...1 (where there are n - 1 1s), because subtracting a bit from 1 is the same as complementing it. Hence, the bit string $a_{n-2} \dots a_0$ is the binary expansion of $(2^{n-1} - 1) - (-m)$. Solving the equation $(2^{n-1} - 1) - (-m) = \sum_{i=0}^{n-2} a_i 2^i$ for *m* gives the desired equation because $a_{n-1} = 1$. **41. a**) -7 **b**) 13 **c**) -15 **d**) -1 **43.** To obtain the two's complement representation of the sum of two integers, add their two's complement representations (as binary integers are added) and ignore any carry out of the leftmost column. However, the answer is invalid if an overflow has occurred. This happens when the leftmost digits in the two's complement representation of the two terms agree and the leftmost digit of the answer differs. **45.** If $m \ge 0$, then the leading bit a_{n-1} is 0 and the formula reads $m = \sum_{i=0}^{n-2} a_i 2^i$. This is correct because the right-hand side is the binary expansion of m. If m < 0, its two's complement expansion has 1 as its leading bit and the remaining n-1 bits are the binary expansion of $2^{n-1} - (-m)$. This means that $(2^{n-1}) - (-m) = \sum_{i=0}^{n-2} a_i 2^i$. Solving for *m* gives the desired equation because $a_{n-1} = 1$. 47. 4*n*

49. procedure *Cantor*(*x*: positive integer)

$$n := 1; f := 1$$

while $(n + 1) \cdot f \le x$
 $n := n + 1$
 $f := f \cdot n$
 $y := x$
while $n > 0$
 $a_n := \lfloor y/f \rfloor$
 $y := y - a_n \cdot f$
 $f := f/n$
 $n := n - 1$
 $\{x = a_n n! + a_{n-1}(n - 1)! + \dots + a_1 1!\}$

51. First step: c = 0, d = 0, $s_0 = 1$; second step: c = 0, d = 1, $s_1 = 0$; third step: c = 1, d = 1, $s_2 = 0$; fourth step: c = 1, d = 1, $s_3 = 0$; fifth step: c = 1, d = 1, $s_4 = 1$; sixth step: c = 1, $s_5 = 1$

53. procedure *subtract*(a, b: positive integers, a > b,

 $a = (a_{n-1}a_{n-2}...a_{1}a_{0})_{2},$ $b = (b_{n-1}b_{n-2}...b_{1}b_{0})_{2})$ $B := 0 \{B \text{ is the borrow}\}$ for j := 0 to n - 1if $a_{j} \ge b_{j} + B$ then $s_{j} := a_{j} - b_{j} - B$ B := 0else $s_{j} := a_{j} + 2 - b_{j} - B$ B := 1 $\{(s_{n-1}s_{n-2}...s_{1}s_{0})_{2} \text{ is the difference}\}$

55. procedure *compare(a, b:* positive integers,

 $a = (a_n a_{n-1} \dots a_1 a_0)_2,$ $b = (b_n b_{n-1} \dots b_1 b_0)_2)$ k := nwhile $a_k = b_k$ and k > 0 k := k - 1if $a_k = b_k$ then print "a equals b" if $a_k > b_k$ then print "a is greater than b" if $a_k < b_k$ then print "a is less than b"

57. $O(\log n)$ **59.** The only time-consuming part of the algorithm is the **while** loop, which is iterated *q* times. The work done inside is a subtraction of integers no bigger than *a*, which has log *a* bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime **3.** a) $2^3 \cdot 11$ b) $2 \cdot 3^2 \cdot 7$ c) 3^6 d) $7 \cdot 11 \cdot 13$ e) $11 \cdot 101$ f) $2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13 \cdot 37$ **5.** $2^8 \cdot 3^4 \cdot 5^2 \cdot 7$

procedure primetester(n : integer greater than 1) isprime := true d := 2
while isprime and d ≤ √n
if n mod d = 0 then isprime := false
else d := d + 1
return isprime

9. Write n = rs, where r > 1 and s > 1. Then $2^n - 1 = 2^{rs} - 1 = (2^r)^s - 1 = (2^r - 1)((2^r)^{s-1} + (2^r)^{s-2} + (2^r)^{s-3} + \cdots + 1)$. The first factor is at least $2^2 - 1 = 3$ and the second factor is at least $2^2 + 1 = 5$. This provides a factoring of $2^n - 1$ into two factors greater than 1, so $2^n - 1$ is composite. **11.** Suppose that $\log_2 3 = a/b$ where $a, b \in \mathbb{Z}^+$ and $b \neq 0$. Then $2^{a/b} = 3$, so $2^a = 3^b$. This violates the fundamental theorem of arithmetic. Hence, $\log_2 3$ is irrational. **13.** 3, 5, and 7 are primes of the desired form. **15.** 1, 7, 11, 13, 17, 19, 23, 29 **17.** a) Yes b) No c) Yes d) Yes **19.** Suppose that *n* is not prime, so that n = ab, where *a* and *b* are integers greater than 1. Because a > 1, by the identity in the hint, $2^a - 1$ is a factor of $2^n - 1$ that is greater than 1, and the second factor in this identity is also greater than 1. Hence, $2^n - 1$ is not prime. **21.** a) 2 b) 4 c) 12 **23.** $\phi(p^k) = p^k - p^{k-1}$ **25.** a) $3^5 \cdot 5^3$ b) 1 c) 23^{17} d) $41 \cdot 43 \cdot 53$ e) 1 f) 1111 **27.** a) $2^{11} \cdot 3^7 \cdot 5^9 \cdot 7^3$ b) $2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3 \cdot 11 \cdot 1^{12}$ $13 \cdot 17$ c) 23^{31} d) $41 \cdot 43 \cdot 53$ e) $2^{12}3^{13}5^{17}7^{21}$ f) Undefined **29.** gcd (92928, 123552) = 1056; lcm(92928, 123552) =10,872,576; both products are 11,481,440,256. **31.** Because $\min(x, y) + \max(x, y) = x + y$, the exponent of p_i in the prime factorization of $gcd(a, b) \cdot lcm(a, b)$ is the sum of the exponents of p_i in the prime factorizations of a and b. **33.** a) 6 b) 3 c) 11 d) 3 e) 40 f) 12 **35.** 9 **37.** By Exercise 36 it follows that $gcd(2^{b} - 1, (2^{a} - 1) \mod (2^{b} - 1)) =$ $gcd(2^{b} - 1, 2^{a \mod b} - 1)$. Because the exponents involved in the calculation are b and $a \mod b$, the same as the quantities involved in computing gcd(a, b), the steps used by the Euclidean algorithm to compute $gcd(2^a - 1, 2^b - 1)$ run in parallel to those used to compute gcd(a, b) and show that $gcd(2^{a} - 1, 2^{b} - 1) = 2^{gcd(a,b)} - 1.$ **39. a)** 1 = $(-1) \cdot 10 + 1 \cdot 11$ **b**) 1 = 21 \cdot 21 + (-10) \cdot 44 c) $12 = (-1) \cdot 36 + 48$ d) $1 = 13 \cdot 55 + (-21) \cdot 34$ e) $3 = 11 \cdot 213 + (-20) \cdot 117$ f) $223 = 1 \cdot 0 + 1 \cdot 223$ g) 1 = 37. $2347 + (-706) \cdot 123$ h) $2 = 1128 \cdot 3454 + (-835) \cdot 4666$ i) $1 = 2468 \cdot 9999 + (-2221) \cdot 11111$ 41. $(-3) \cdot 26 + 1 \cdot 91 =$ 13 **43.** $34 \cdot 144 + (-55) \cdot 89 = 1$

45. procedure *extended Euclidean*(*a*, *b*: positive integers)

x := ay := boldolds := 1olds := 0oldoldt := 0oldt := 1while $y \neq 0$ $q := x \operatorname{div} y$ $r := x \mod y$ x := yy := r $s := oldolds - q \cdot olds$ $t := oldoldt - q \cdot oldt$ oldolds := oldsoldoldt := oldtolds := soldt := t $\{\gcd(a, b) \text{ is } x, \text{ and } (oldolds)a + (oldoldt)b = x\}$

47. a) $a_n = 1$ if *n* is prime and $a_n = 0$ otherwise. **b)** a_n is the smallest prime factor of *n* with $a_1 = 1$. **c)** a_n is the number of positive divisors of *n*. **d)** $a_n = 1$ if *n* has no divisors that are perfect squares greater than 1 and $a_n = 0$ otherwise. **e)** a_n is the largest prime less than or equal to *n*. **f)** a_n is the product of the first n - 1 primes. **49.** Because every second integer is divisible by 2, the product is divisible by 2. Because every third integer is divisible by 3, the product is divisible by 3. Therefore the product has both 2 and 3 in its prime factorization and is therefore divisible by $3 \cdot 2 = 6$. **51.** n = 1601 is a counterexample. **53** Setting k = a + b + 1 will produce the composite number $a(a + b + 1) + b = a^2 + ab + a + b = (a + 1)(a + b)$.

55. Suppose that there are only finitely many primes of the form 4k + 3, namely q_1, q_2, \ldots, q_n , where $q_1 = 3, q_2 = 7$, and so on. Let $Q = 4q_1q_2 \cdots q_n - 1$. Note that Q is of the form 4k + 3 (where $k = q_1 q_2 \cdots q_n - 1$). If Q is prime, then we have found a prime of the desired form different from all those listed. If Q is not prime, then Q has at least one prime factor not in the list q_1, q_2, \ldots, q_n , because the remainder when Q is divided by q_i is $q_i - 1$, and $q_i - 1 \neq 0$. Because all odd primes are either of the form 4k + 1 or of the form 4k + 3, and the product of primes of the form 4k + 1 is also of this form (because (4k+1)(4m+1) = 4(4km+k+m)+1), there must be a factor of Q of the form 4k + 3 different from the primes we listed. 57. Given a positive integer x, we show that there is exactly one positive rational number m/n (in lowest terms) such that K(m/n) = x. From the prime factorization of x, read off the *m* and *n* such that K(m/n) = x. The primes that occur to even powers are the primes that occur in the prime factorization of m, with the exponents being half the corresponding exponents in x; and the primes that occur to odd powers are the primes that occur in the prime factorization of n, with the exponents being half of one more than the exponents in x.

Section 4.4

1. $15 \cdot 7 = 105 \equiv 1 \pmod{26}$ **3.** 7 **5. a**) 7 **b**) 52 **c**) 34 d) 73 7. Suppose that *b* and *c* are both inverses of *a* modulo m. Then $ba \equiv 1 \pmod{m}$ and $ca \equiv 1 \pmod{m}$. Hence, $ba \equiv ca \pmod{m}$. Because gcd(a, m) = 1 it follows by Theorem 7 in Section 4.3 that $b \equiv c \pmod{m}$. 9.8 11. a) 67 **b**) 88 **c**) 146 **13.** 3 and 6 **15.** Let $m' = m/\gcd(c, m)$. Because all the common factors of *m* and *c* are divided out of m to obtain m', it follows that m' and c are relatively prime. Because m divides ac - bc = (a - b)c, it follows that m' divides (a - b)c. By Lemma 3 in Section 4.3, we see that m' divides a - b, so $a \equiv b \pmod{m'}$. 17. Suppose that $x^2 \equiv 1 \pmod{p}$. Then p divides $x^2 - 1 = (x + 1)(x - 1)$. By Lemma 2 it follows that $p \mid x + 1$ or $p \mid x - 1$, so $x \equiv -1 \pmod{p}$ or $x \equiv 1 \pmod{p}$. **19. a)** Suppose that $ia \equiv ja \pmod{p}$, where $1 \leq i < j < p$. Then p divides ja - ia = a(j - i). By Theorem 1, because a is not divisible by p, p divides i - i, which is impossible because i - i is a positive integer less than p. **b**) By part (a), because no two of $a, 2a, \ldots, (p-1)a$ are congruent modulo p, each must be congruent to a different number from 1 to p-1. It follows that $a \cdot 2a \cdot 3a \cdots (p-1) \cdot a \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$. It follows that $(p-1)! \cdot a^{p-1} \equiv p-1 \pmod{p}$. c) By Wilson's theorem and part (b), if p does not divide a, it follows that $(-1) \cdot a^{p-1} \equiv -1 \pmod{p}$. Hence, $a^{p-1} \equiv 1 \pmod{p}$. **d**) If $p \mid a$, then $p \mid a^p$. Hence, $a^p \equiv a \equiv 0 \pmod{p}$. If p does not divide a, then $a^{p-1} \equiv a \pmod{p}$, by part (c). Multiplying both sides of this congruence by a gives $a^p \equiv a \pmod{p}$. **21.** All integers of the form 323 + 330k, where k is an integer **23.** All integers of the form 53 + 60k, where k is an integer