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EXAMPLE 13 Suppose that am,n is defined recursively for (m, n) ∈ N× N by a0,0 = 0 and

am,n =
{

am−1,n + 1 if n = 0 and m > 0

am,n−1 + n if n > 0.

Show that am,n = m+ n(n+ 1)/2 for all (m, n) ∈ N× N, that is, for all pairs of nonnegative
integers.

Solution:We can prove thatam,n = m+ n(n+ 1)/2 using a generalized version of mathematical
induction. The basis step requires that we show that this formula is valid when (m, n) = (0, 0).
The induction step requires that we show that if the formula holds for all pairs smaller than
(m, n) in the lexicographic ordering of N× N, then it also holds for (m, n).

BASIS STEP: Let (m, n) = (0, 0). Then by the basis case of the recursive definition of am,n

we have a0,0 = 0. Furthermore, when m = n = 0, m+ n(n+ 1)/2 = 0+ (0 · 1)/2 = 0. This
completes the basis step.

INDUCTIVE STEP: Suppose that am′,n′ = m′ + n′(n′ + 1)/2 whenever (m′, n′) is less
than (m, n) in the lexicographic ordering of N× N. By the recursive definition, if n = 0,
then am,n = am−1,n + 1. Because (m− 1, n) is smaller than (m, n), the inductive hypoth-
esis tells us that am−1,n = m− 1+ n(n+ 1)/2, so that am,n = m− 1+ n(n+ 1)/2+ 1 =
m+ n(n+ 1)/2, giving us the desired equality. Now suppose that n > 0, so am,n = am,n−1 + n.
Because (m, n− 1) is smaller than (m, n), the inductive hypothesis tells us that am,n−1 =
m+ (n− 1)n/2, so am,n = m+ (n− 1)n/2+ n = m+ (n2 − n+ 2n)/2 = m+ n(n+ 1)/2.
This finishes the inductive step. ▲

As mentioned, we will justify this proof technique in Section 9.6.

Exercises

1. Find f (1), f (2), f (3), and f (4) if f (n) is defined recur-
sively by f (0) = 1 and for n = 0, 1, 2, . . .

a) f (n+ 1) = f (n)+ 2.
b) f (n+ 1) = 3f (n).
c) f (n+ 1) = 2f (n).
d) f (n+ 1) = f (n)2 + f (n)+ 1.

2. Find f (1), f (2), f (3), f (4), and f (5) if f (n) is defined
recursively by f (0) = 3 and for n = 0, 1, 2, . . .

a) f (n+ 1) = −2f (n).
b) f (n+ 1) = 3f (n)+ 7.
c) f (n+ 1) = f (n)2 − 2f (n)− 2.
d) f (n+ 1) = 3f (n)/3.

3. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = −1, f (1) = 2, and for n = 1, 2, . . .

a) f (n+ 1) = f (n)+ 3f (n− 1).
b) f (n+ 1) = f (n)2f (n− 1).
c) f (n+ 1) = 3f (n)2 − 4f (n− 1)2.
d) f (n+ 1) = f (n− 1)/f (n).

4. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = f (1) = 1 and for n = 1, 2, . . .

a) f (n+ 1) = f (n)− f (n− 1).
b) f (n+ 1) = f (n)f (n− 1).
c) f (n+ 1) = f (n)2 + f (n− 1)3.
d) f (n+ 1) = f (n)/f (n− 1).

5. Determine whether each of these proposed definitions is
a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.
a) f (0) = 0, f (n) = 2f (n− 2) for n ≥ 1
b) f (0) = 1, f (n) = f (n− 1)− 1 for n ≥ 1
c) f (0) = 2, f (1) = 3, f (n) = f (n− 1)− 1 for

n ≥ 2
d) f (0) = 1, f (1) = 2, f (n) = 2f (n− 2) for n ≥ 2
e) f (0) = 1, f (n) = 3f (n− 1) if n is odd and n ≥ 1

and f (n) = 9f (n− 2) if n is even and n ≥ 2
6. Determine whether each of these proposed definitions is

a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.
a) f (0) = 1, f (n) = −f (n− 1) for n ≥ 1
b) f (0) = 1, f (1) = 0, f (2) = 2, f (n) = 2f (n− 3)

for n ≥ 3
c) f (0) = 0, f (1) = 1, f (n) = 2f (n+ 1) for n ≥ 2
d) f (0) = 0, f (1) = 1, f (n) = 2f (n− 1) for n ≥ 1
e) f (0) = 2, f (n) = f (n− 1) if n is odd and n ≥ 1 and

f (n) = 2f (n− 2) if n ≥ 2
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7. Give a recursive definition of the sequence {an}, n =
1, 2, 3, . . . if
a) an = 6n. b) an = 2n+ 1.
c) an = 10n. d) an = 5.

8. Give a recursive definition of the sequence {an}, n =
1, 2, 3, . . . if
a) an = 4n− 2. b) an = 1+ (−1)n.
c) an = n(n+ 1). d) an = n2.

9. Let F be the function such that F(n) is the sum of the first
n positive integers. Give a recursive definition of F(n).

10. Give a recursive definition of Sm(n), the sum of the inte-
ger m and the nonnegative integer n.

11. Give a recursive definition of Pm(n), the product of the
integer m and the nonnegative integer n.

In Exercises 12–19 fn is the nth Fibonacci number.
12. Prove that f 2

1 + f 2
2 + · · · + f 2

n = fnfn+1 when n is a
positive integer.

13. Prove that f1 + f3 + · · · + f2n−1 = f2n when n is a pos-
itive integer.

∗14. Show that fn+1fn−1 − f 2
n = (−1)n when n is a positive

integer.
∗15. Show that f0f1 + f1f2 + · · · + f2n−1f2n = f 2

2n when n

is a positive integer.
∗16. Show that f0 − f1 + f2 − · · · − f2n−1 + f2n =

f2n−1 − 1 when n is a positive integer.
17. Determine the number of divisions used by the Euclidean

algorithm to find the greatest common divisor of the Fi-
bonacci numbers fn and fn+1, where n is a nonnegative
integer.Verify your answer using mathematical induction.

18. Let

A =
[

1 1
1 0

]
.

Show that

An =
[
fn+1 fn

fn fn−1

]

when n is a positive integer.
19. By taking determinants of both sides of the equation in

Exercise 18, prove the identity given in Exercise 14. (Re-

call that the determinant of the matrix

∣∣∣∣
a b

c d

∣∣∣∣ is ad − bc.)

∗20. Give a recursive definition of the functions max and
min so that max(a1, a2, . . . , an) and min(a1, a2, . . . , an)

are the maximum and minimum of the n numbers
a1, a2, . . . , an, respectively.

∗21. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers.
Use the recursive definitions that you gave in Exercise 20
to prove these.
a) max(−a1,−a2, . . . ,−an) = −min(a1, a2, . . . , an)

b) max(a1 + b1, a2 + b2, . . . , an + bn)

≤ max(a1, a2, . . . , an)+max(b1, b2, . . . , bn)

c) min(a1 + b1, a2 + b2, . . . , an + bn)

≥ min(a1, a2, . . . , an)+min(b1, b2, . . . , bn)

22. Show that the set S defined by 1 ∈ S and s + t ∈ S when-
ever s ∈ S and t ∈ S is the set of positive integers.

23. Give a recursive definition of the set of positive integers
that are multiples of 5.

24. Give a recursive definition of
a) the set of odd positive integers.
b) the set of positive integer powers of 3.
c) the set of polynomials with integer coefficients.

25. Give a recursive definition of
a) the set of even integers.
b) the set of positive integers congruent to 2 modulo 3.
c) the set of positive integers not divisible by 5.

26. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a + 2, b + 3) ∈ S

and (a + 3, b + 2) ∈ S.
a) List the elements of S produced by the first five ap-

plications of the recursive definition.
b) Use strong induction on the number of applications

of the recursive step of the definition to show that
5 | a + b when (a, b) ∈ S.

c) Use structural induction to show that 5 | a + b when
(a, b) ∈ S.

27. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a, b + 1) ∈ S,
(a + 1, b + 1) ∈ S, and (a + 2, b + 1) ∈ S.
a) List the elements of S produced by the first four ap-

plications of the recursive definition.
b) Use strong induction on the number of applications of

the recursive step of the definition to show that a ≤ 2b

whenever (a, b) ∈ S.
c) Use structural induction to show that a ≤ 2b when-

ever (a, b) ∈ S.
28. Give a recursive definition of each of these sets of ordered

pairs of positive integers. [Hint: Plot the points in the set
in the plane and look for lines containing points in the
set.]
a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is odd}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a | b}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, and 3 | a + b}

29. Give a recursive definition of each of these sets of or-
dered pairs of positive integers. Use structural induction
to prove that the recursive definition you found is correct.
[Hint: To find a recursive definition, plot the points in the
set in the plane and look for patterns.]
a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is even}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a or b is odd}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, a + b is odd, and 3 | b}

30. Prove that in a bit string, the string 01 occurs at most one
more time than the string 10.

31. Define well-formed formulae of sets, variables represent-
ing sets, and operators from { ,∪,∩,−}.
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32. a) Give a recursive definition of the function ones(s),
which counts the number of ones in a bit string s.

b) Use structural induction to prove that ones(st) =
ones(s)+ ones(t).

33. a) Give a recursive definition of the function m(s), which
equals the smallest digit in a nonempty string of dec-
imal digits.

b) Use structural induction to prove that m(st) =
min(m(s), m(t)).

The reversal of a string is the string consisting of the symbols
of the string in reverse order. The reversal of the string w is
denoted by wR .
34. Find the reversal of the following bit strings.

a) 0101 b) 1 1011 c) 1000 1001 0111
35. Give a recursive definition of the reversal of a string.

[Hint: First define the reversal of the empty string. Then
write a string w of length n+ 1 as xy, where x is a string
of length n, and express the reversal of w in terms of xR

and y.]
∗36. Use structural induction to prove that (w1w2)

R = wR
2 wR

1 .

37. Give a recursive definition of wi , where w is a string and
i is a nonnegative integer. (Here wi represents the con-
catenation of i copies of the string w.)

∗38. Give a recursive definition of the set of bit strings that are
palindromes.

39. When does a string belong to the set A of bit strings de-
fined recursively by

λ ∈ A

0x1 ∈ A if x ∈ A,

where λ is the empty string?
∗40. Recursively define the set of bit strings that have more

zeros than ones.
41. Use Exercise 37 and mathematical induction to show that

l(wi ) = i · l(w), where w is a string and i is a nonnegative
integer.

∗42. Show that (wR)i = (wi )R whenever w is a string and i is
a nonnegative integer; that is, show that the ith power of
the reversal of a string is the reversal of the ith power of
the string.

43. Use structural induction to show that n(T ) ≥ 2h(T )+ 1,
where T is a full binary tree, n(T ) equals the number of
vertices of T , and h(T ) is the height of T .

The set of leaves and the set of internal vertices of a full binary
tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with
exactly one vertex r . This tree has no internal vertices.

Recursive step: The set of leaves of the tree T = T1 · T2 is
the union of the sets of leaves of T1 and of T2. The inter-
nal vertices of T are the root r of T and the union of the
set of internal vertices of T1 and the set of internal vertices
of T2.
44. Use structural induction to show that l(T ), the number

of leaves of a full binary tree T , is 1 more than i(T ), the
number of internal vertices of T .

45. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a0,0 = 0 and

am,n =
{
am−1,n + 1 if n = 0 and m > 0
am,n−1 + 1 if n > 0,

then am,n = m+ n for all (m, n) ∈ N× N.

46. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a1,1 = 5 and

am,n =
{
am−1,n + 2 if n = 1 and m > 1
am,n−1 + 2 if n > 1,

then am,n = 2(m+ n)+ 1 for all (m, n) ∈ Z+ × Z+.
∗47. A partition of a positive integer n is a way to write n

as a sum of positive integers where the order of terms in
the sum does not matter. For instance, 7 = 3+ 2+ 1+ 1
is a partition of 7. Let Pm equal the number of different
partitions of m, and let Pm,n be the number of different
ways to express m as the sum of positive integers not
exceeding n.
a) Show that Pm,m = Pm.
b) Show that the following recursive definition for Pm,n

is correct:

Pm,n =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if m = 1
1 if n = 1
Pm,m if m < n

1+ Pm,m−1 if m = n > 1
Pm,n−1 + Pm−n,n if m > n > 1.

c) Find the number of partitions of 5 and of 6 using this
recursive definition.

Consider an inductive definition of a version of Ackermann’s
function. This function was named after WilhelmAckermann,
a German mathematician who was a student of the great math-
ematician David Hilbert. Ackermann’s function plays an im-
portant role in the theory of recursive functions and in the study
of the complexity of certain algorithms involving set unions.
(There are several different variants of this function. All are
called Ackermann’s function and have similar properties even
though their values do not always agree.)

A(m, n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2n if m = 0
0 if m ≥ 1 and n = 0
2 if m ≥ 1 and n = 1
A(m− 1, A(m, n− 1)) if m ≥ 1 and n ≥ 2

Exercises 48–55 involve this version of Ackermann’s func-
tion.

48. Find these values of Ackermann’s function.
a) A(1, 0) b) A(0, 1)

c) A(1, 1) d) A(2, 2)

49. Show that A(m, 2) = 4 whenever m ≥ 1.

50. Show that A(1, n) = 2n whenever n ≥ 1.

51. Find these values of Ackermann’s function.

a) A(2, 3) *b) A(3, 3)

∗52. Find A(3, 4).
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∗∗53. Prove that A(m, n+ 1) > A(m, n) whenever m and n are
nonnegative integers.

∗54. Prove that A(m+ 1, n) ≥ A(m, n) whenever m and n are
nonnegative integers.

55. Prove that A(i, j) ≥ j whenever i and j are nonnegative
integers.

56. Use mathematical induction to prove that a function F

defined by specifying F(0) and a rule for obtaining
F(n+ 1) from F(n) is well defined.

57. Use strong induction to prove that a function F defined by
specifying F(0) and a rule for obtaining F(n+ 1) from
the values F(k) for k = 0, 1, 2, . . . , n is well defined.

58. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.
a) F(n) = 1+ F(�n/2�) for n ≥ 1 and F(1) = 1.
b) F(n) = 1+ F(n− 3) for n ≥ 2, F(1) = 2, and

F(2) = 3.
c) F(n) = 1+ F(n/2) for n ≥ 2, F(1) = 1, and

F(2) = 2.
d) F(n) = 1+ F(n/2) if n is even and n ≥ 2, F(n) =

1− F(n− 1) if n is odd, and F(1) = 1.
e) F(n) = 1+ F(n/2) if n is even and n ≥ 2, F (n) =

F(3n− 1) if n is odd and n ≥ 3, and F(1) = 1.

59. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.
a) F(n) = 1+ F(�(n+ 1)/2�) for n ≥ 1 and

F(1) = 1.

b) F(n) = 1+ F(n− 2) for n ≥ 2 and F(1) = 0.

c) F(n) = 1+ F(n/3) for n ≥ 3, F (1) = 1, F(2) = 2,
and F(3) = 3.

d) F(n) = 1+ F(n/2) if n is even and n ≥ 2, F(n) =
1+ F(n− 2) if n is odd, and F(1) = 1.

e) F(n) = 1+ F(F(n− 1)) if n ≥ 2 and F(1) = 2.
Exercises 60–62 deal with iterations of the logarithm function.
Let log n denote the logarithm of n to the base 2, as usual. The
function log(k) n is defined recursively by

log(k) n =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n if k = 0
log(log(k−1) n) if log(k−1) n is defined

and positive
undefined otherwise.

The iterated logarithm is the function log∗ n whose value at n
is the smallest nonnegative integer k such that log(k) n ≤ 1.
60. Find these values.

a) log(2) 16 b) log(3) 256
c) log(3) 265536 d) log(4) 2265536

61. Find the value of log∗ n for these values of n.

a) 2 b) 4 c) 8 d) 16
e) 256 f) 65536 g) 22048

62. Find the largest integer n such that log∗ n = 5. Determine
the number of decimal digits in this number.

Exercises 63–65 deal with values of iterated functions. Sup-
pose that f (n) is a function from the set of real numbers, or
positive real numbers, or some other set of real numbers, to
the set of real numbers such that f (n) is monotonically in-
creasing [that is, f (n) < f (m) when n < m) and f (n) < n

for all n in the domain of f .] The function f (k)(n) is defined
recursively by

f (k)(n) =
{

n if k = 0
f (f (k−1)(n)) if k > 0.

Furthermore, let c be a positive real number. The iterated
function f ∗c is the number of iterations of f required to reduce
its argument to c or less, so f ∗c (n) is the smallest nonnegative
integer k such that f k(n) ≤ c.
63. Let f (n) = n− a, where a is a positive integer. Find a

formula for f (k)(n). What is the value of f ∗0 (n) when n

is a positive integer?
64. Let f (n) = n/2. Find a formula for f (k)(n). What is the

value of f ∗1 (n) when n is a positive integer?

65. Let f (n) = √n. Find a formula for f (k)(n). What is the
value of f ∗2 (n) when n is a positive integer?

5.4 Recursive Algorithms

Introduction

Sometimes we can reduce the solution to a problem with a particular set of input values to the
solution of the same problem with smaller input values. For instance, the problem of finding
the greatest common divisor of two positive integers a and b, where b > a, can be reduced
to finding the greatest common divisor of a pair of smaller integers, namely, b mod a and
a, because gcd(b mod a, a) = gcd(a, b). When such a reduction can be done, the solution to

Here’s a famous
humorous quote: “To
understand recursion, you
must first understand
recursion.”

the original problem can be found with a sequence of reductions, until the problem has been
reduced to some initial case for which the solution is known. For instance, for finding the greatest
common divisor, the reduction continues until the smaller of the two numbers is zero, because
gcd(a, 0) = a when a > 0.

We will see that algorithms that successively reduce a problem to the same problem with
smaller input are used to solve a wide variety of problems.


