13.

15. The dots in certain regions indicate that those regions are not empty.

17. Suppose that $x \in A$. Because $A \subseteq B$, this implies that $x \in B$. Because $B \subseteq C$, we see that $x \in C$. Because $x \in A$ implies that $x \in C$, it follows that $A \subseteq C$. 19. a) 1 b) 1 c) 2 d) 3 21. a) $\{\emptyset,\{a\}\} \quad$ b) $\{\emptyset,\{a\},\{b\},\{a, b\}\}$ c) $\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\} \begin{array}{lllll}23 . & \text { a) } 8 & \text { b) } 16 & \text { c) } 2 & 25\end{array}$. For the "if" part, given $A \subseteq B$, we want to show that that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, i.e., if $C \subseteq A$ then $C \subseteq B$. But this follows directly from Exercise 17. For the "only if" part, given that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we want to show that $A \subseteq B$. Suppose $a \in A$. Then $\{a\} \subseteq A$, so $\{a\} \in \mathcal{P}(A)$. Since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, it follows that $\{a\} \in \mathcal{P}(B)$, which means that $\{a\} \subseteq B$. But this implies $a \in B$, as desired. 27. a) $\{(a, y),(b, y)$, $(c, y),(d, y),(a, z),(b, z),(c, z),(d, z)\}$ b) $\{(y, a),(y, b)$, $(y, c),(y, d),(z, a),(z, b),(z, c),(z, d)\} \quad$ 29. The set of triples (a, b, c), where a is an airline and b and c are cities. A useful subset of this set is the set of triples (a, b, c) for which a flies between b and $c . \quad 31 . \emptyset \times A=\{(x, y) \mid x \in$ \emptyset and $y \in A\}=\emptyset=\{(x, y) \mid x \in A$ and $y \in \emptyset\}=A \times \emptyset$ 33. a) $\{(0,0),(0,1),(0,3),(1,0),(1,1),(1,3),(3,0),(3,1)$, $(3,3)\} \mathbf{b})\{(1,1),(1,2),(1, a),(1, b),(2,1),(2,2),(2, a)$, $(2, b),(a, 1),(a, 2),(a, a),(a, b),(b, 1),(b, 2),(b, a),(b, b)\}$ 35. $m n \quad$ 37. m^{n} 39. The elements of $A \times B \times C$ consist of 3-tuples (a, b, c), where $a \in A, b \in B$, and $c \in C$, whereas the elements of $(A \times B) \times C$ look like $((a, b), c)$-ordered pairs, the first coordinate of which is again an ordered pair. 41. a) The square of a real number is never -1 . True b) There exists an integer whose square is 2 . False c) The square of every integer is positive. False \mathbf{d}) There is a real number equal to its own square. True 43. a) $\{-1,0,1\}$ b) $\mathbf{Z}-\{0,1\}$ c) \emptyset 45. We must show that $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$ if and only if $a=c$ and $b=d$. The "if" part is immediate. So assume these two sets are equal. First, consider the case when $a \neq b$. Then $\{\{a\},\{a, b\}\}$ contains exactly two elements, one of which contains one element. Thus, $\{\{c\},\{c, d\}\}$ must have the same property, so $c \neq d$ and $\{c\}$ is the element containing exactly one element. Hence, $\{a\}=\{c\}$, which implies that $a=c$. Also, the two-element sets $\{a, b\}$ and $\{c, d\}$ must be equal. Because $a=c$ and $a \neq b$, it follows that $b=d$.

Second, suppose that $a=b$. Then $\{\{a\},\{a, b\}\}=\{\{a\}\}$, a set with one element. Hence, $\{\{c\},\{c, d\}\}$ has only one element, which can happen only when $c=d$, and the set is $\{\{c\}\}$. It then follows that $a=c$ and $b=d$. 47. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Represent each subset of S with a bit string of length n, where the i th bit is 1 if and only if $a_{i} \in S$. To generate all subsets of S, list all 2^{n} bit strings of length n (for instance, in increasing order), and write down the corresponding subsets.

Section 2.2

1. a) The set of students who live within one mile of school and walk to classes b) The set of students who live within one mile of school or walk to classes (or do both) c) The set of students who live within one mile of school but do not walk to classes d) The set of students who walk to classes but live more than one mile away from school 3. a) $\{0,1,2,3,4,5,6\}$ b) $\{3\}$ c) $\{1,2,4,5\}$ d) $\{0,6\} \quad$ 5. $\overline{\bar{A}}=$ $\{x \mid \neg(x \in \bar{A})\}=\{x \mid \neg(\neg x \in A)\}=\{x \mid x \in A\}=A$ 7. a) $A \cup U=\{x \mid x \in A \vee x \in U\}=\{x \mid x \in A \vee \mathbf{T}\}=$ $\{x \mid \mathbf{T}\}=U \mathbf{b}) A \cap \emptyset=\{x \mid x \in A \wedge x \in \emptyset\}=\{x \mid x \in$ $A \wedge \mathbf{F}\}=\{x \mid \mathbf{F}\}=\emptyset$ 9. a) $A \cup \bar{A}=\{x \mid x \in A \vee x \notin A\}=U$ b) $A \cap \bar{A}=\{x \mid x \in A \wedge x \notin A\}=\emptyset \quad$ 11. a) $A \cup$ $B=\{x \mid x \in A \vee x \in B\}=\{x \mid x \in B \vee x \in A\}=B \cup A$ b) $A \cap B=\{x \mid x \in A \wedge x \in B\}=\{x \mid x \in B \wedge x \in A\}=$ $B \cap A$ 13. Suppose $x \in A \cap(A \cup B)$. Then $x \in A$ and $x \in A \cup B$ by the definition of intersection. Because $x \in A$, we have proved that the left-hand side is a subset of the righthand side. Conversely, let $x \in A$. Then by the definition of union, $x \in A \cup B$ as well. Therefore $x \in A \cap(A \cup B)$ by the definition of intersection, so the right-hand side is a subset of the left-hand side. $\quad 15$. a) $x \in \overline{A \cup B} \equiv$ $x \notin A \cup B \equiv \neg(x \in A \vee x \in B) \equiv \neg(x \in A) \wedge \neg(x \in B) \equiv$ $x \notin A \wedge x \notin B \equiv x \in \bar{A} \wedge x \in \bar{B} \equiv x \in \bar{A} \cap \bar{B}$
b)

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A} \cup \boldsymbol{B}$	$\overline{\boldsymbol{A} \cup \boldsymbol{B}}$	$\overline{\boldsymbol{A}}$	$\overline{\boldsymbol{B}}$	$\overline{\boldsymbol{A}} \cap \overline{\boldsymbol{B}}$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

17. a) $x \in \overline{A \cap B \cap C} \equiv x \notin A \cap B \cap C \equiv x \notin A \vee x \notin$ $B \vee x \notin C \equiv x \in \bar{A} \vee x \in \bar{B} \vee x \in \bar{C} \equiv x \in \bar{A} \cup \bar{B} \cup \bar{C}$
b)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}$	$\overline{\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}}$	$\overline{\boldsymbol{A}}$	$\overline{\boldsymbol{B}}$	$\overline{\boldsymbol{C}}$	$\overline{\boldsymbol{A}} \cup \overline{\boldsymbol{B}} \cup \overline{\boldsymbol{C}}$
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	1	0	1
0	0	0	0	1	1	1	1	1

19. a) Both sides equal $\{x \mid x \in A \wedge x \notin B\}$. b) $A=A \cap U=$ $A \cap(B \cup \bar{B})=(A \cap B) \cup(A \cap \bar{B}) \quad$ 21. $x \in A \cup(B \cup C) \equiv$ $(x \in A) \vee(x \in(B \cup C)) \equiv(x \in A) \vee(x \in B \vee x \in$ $C) \equiv(x \in A \vee x \in B) \vee(x \in C) \equiv x \in(A \cup B) \cup C$ 23. $x \in A \cup(B \cap C) \equiv(x \in A) \vee(x \in(B \cap C)) \equiv$ $(x \in A) \vee(x \in B \wedge x \in C) \equiv(x \in A \vee x \in$ B) $\wedge(x \in A \vee x \in C) \equiv x \in(A \cup B) \cap(A \cup C)$ 25. а) $\{4,6\} \quad$ b) $\{0,1,2,3,4,5,6,7,8,9,10\}$ c) $\{4,5,6,8,10\}$ $\begin{array}{ll}\text { d) }\{0,2,4,5,6,7,8,9,10\} & 27 \text {. a) The double-shaded portion }\end{array}$ is the desired set.

b) The desired set is the entire shaded portion.

c) The desired set is the entire shaded portion.

20. a) $B \subseteq A$ b) $A \subseteq B$ c) $A \cap B=\emptyset$ d) Nothing, because this is always true e) $A=B \quad$ 31. $A \subseteq B \equiv \forall x(x \in A \rightarrow$ $x \in B) \equiv \forall x(x \notin B \rightarrow x \notin A) \equiv \forall x(x \in \bar{B} \rightarrow x \in$ $\bar{A}) \equiv \bar{B} \subseteq \bar{A} \quad 33$. The set of students who are computer science majors but not mathematics majors or who are mathematics majors but not computer science majors 35. An element is in $(A \cup B)-(A \cap B)$ if it is in the union of A and B but not in the intersection of A and B, which means that it is in either A or B but not in both A and B. This is exactly what it means for an element to belong to $A \oplus B$. 37. a) $A \oplus A=(A-A) \cup(A-A)=\emptyset \cup \emptyset=\emptyset$ b) $A \oplus \emptyset=(A-\emptyset) \cup(\emptyset-A)=A \cup \emptyset=A$ c) $A \oplus U=$ $(A-U) \cup(U-A)=\emptyset \cup \bar{A}=\bar{A}$ d) $A \oplus \bar{A}=(A-\bar{A}) \cup$ $(\bar{A}-A)=A \cup \bar{A}=U \quad$ 39. $B=\emptyset \quad$ 41. Yes 43 . Yes 45. If $A \cup B$ were finite, then it would have n elements for some natural number n. But A already has more than n elements, because it is infinite, and $A \cup B$ has all the elements that A has, so $A \cup B$ has more than n elements. This contradiction shows that $A \cup B$ must be infinite. 47. a) $\{1,2,3, \ldots, n\}$ b) $\{1\}$ $\begin{array}{llll}\text { 49. a) } A_{n} & \text { b) }\{0,1\} & \text { 51. a) } \mathbf{Z},\{-1,0,1\} & \text { b) } \mathbf{Z}-\{0\} \text {, Ø }\end{array}$ c) $\mathbf{R},[-1,1] \quad$ d) $[1, \infty)$, Ø \quad 53. a) $\{1,2,3,4,7,8,9,10\}$ b) $\{2,4,5,6,7\}$ c) $\{1,10\} \quad$ 55. The bit in the i th position of the bit string of the difference of two sets is 1 if the i th bit of the first string is 1 and the i th bit of the second string is 0 , and is 0 otherwise. 57. a) 1111100000000000000000 $0000 \vee 01110010000000010001010000=1111101000$ 0000010001010000 , representing $\{a, b, c, d, e, g, p, t, v\}$
b) $11111000000000000000000000 \wedge 01110010000000$ $010001010000=01110000000000000000000000$, representing $\{b, c, d\} \quad$ c) $(1111100000000000000000$ $0000 \vee 00011001100001100001100110) \wedge(011100$ $10000000010001010000 \vee 0010100010000010000010$ 0111) $=11111001100001100001100110 \wedge 011110$ $10100000110001110111=0111100010000010000110$ 0110, representing $\{b, c, d, e, i, o, t, u, x, y\} \quad$ d) 111110 $00000000000000000000 \vee 0111001000000001000101$ $0000 \vee 00101000100000100000100111 \vee 0001100110$ $0001100001100110=1111101110000111000111$ 0111, representing $\{a, b, c, d, e, g, h, i, n, o, p, t, u, v, x, y, z\}$ 59. a) $\{1,2,3,\{1,2,3\}\}$ b) $\{\emptyset\} \quad$ c) $\{\emptyset,\{\emptyset\}\}$ d) $\{\emptyset,\{\emptyset\}$, $\{\emptyset,\{\emptyset\}\}\}$ 61. a) $\{3 \cdot a, 3 \cdot b, 1 \cdot c, 4 \cdot d\}$ b) $\{2 \cdot a, 2 \cdot b\}$ c) $\{1 \cdot a, 1 \cdot c\}$ d) $\{1 \cdot b, 4 \cdot d\}$ e) $\{5 \cdot a, 5 \cdot b, 1 \cdot c, 4 \cdot d\}$ 63. $\bar{F}=\{0.4$ Alice, 0.1 Brian, 0.6 Fred, 0.9 Oscar, 0.5 Rita $\}$, $\bar{R}=\{0.6$ Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar, 0.3 Rita $\}$ 65. \{0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita\}

Section 2.3

1. a) $f(0)$ is not defined. b) $f(x)$ is not defined for $x<0$. c) $f(x)$ is not well-defined because there are two distinct values assigned to each x. 3. a) Not a function b) A function c) Not a function \quad 5. a) Domain the set of bit strings; range the set of integers b) Domain the set of bit strings; range the set of even nonnegative integers c) Domain the set of bit strings; range the set of nonnegative integers not exceeding 7 d) Domain the set of positive integers; range the set of squares of positive integers $=\{1,4,9,16, \ldots\}$ 7. a) Domain $\mathbf{Z}^{+} \times \mathbf{Z}^{+}$; range $\left.\mathbf{Z}^{+} \mathbf{b}\right)$ Domain \mathbf{Z}^{+}; range $\{0,1,2,3,4,5,6,7,8,9\} \quad$ c) Domain the set of bit strings; $\begin{array}{lll}\text { range } \mathbf{N} & \mathbf{d}) \text { Domain the set of bit strings; range } \mathbf{N} & 9 . \\ \text { a) }\end{array} 1$ $\begin{array}{lllllll}\text { b) } 0 & \text { c) } 0 & \text { d) }-1 & \text { e) } 3 & \text { f) }-1 & \text { g) } 2 & \text { h) } 1\end{array} \quad \mathbf{1 1}$. Only the function in part (a) 13. Only the functions in parts (a) and (d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto 17. a) Depends on whether teachers share offices b) One-to-one assuming only one teacher per bus c) Most likely not one-to-one, especially if salary is set by a collective bargaining agreement d) One-to-one 19. Answers will vary. a) Set of offices at the school; probably not onto b) Set of buses going on the trip; onto, assuming every bus gets a teacher chaperone c) Set of real numbers; not onto d) Set of strings of nine digits with hyphens after third and fifth digits; not onto 21. a) The function $f(x)$ with $f(x)=3 x+1$ when $x \geq 0$ and $f(x)=-3 x+2$ when $x<0$ b) $f(x)=|x|+1$ c) The function $f(x)$ with $f(x)=2 x+1$ when $x \geq 0$ and $f(x)=-2 x$ when $x<0 \quad$ d) $f(x)=x^{2}+1 \quad$ 23. a) Yes b) No c) Yes d) No 25 . Suppose that f is strictly decreasing. This means that $f(x)>f(y)$ whenever $x<y$. To show that g is strictly increasing, suppose that $x<y$. Then $g(x)=1 / f(x)<1 / f(y)=g(y)$. Conversely, suppose that g is strictly increasing. This means that $g(x)<g(y)$ whenever $x<y$. To show that f is strictly decreasing, suppose that $x<y$. Then $f(x)=1 / g(x)>1 / g(y)=f(y)$. 27. a) Let f be a given strictly decreasing function from \mathbf{R} to itself. If
