ECS20
 Homework 1
 Due January 15, 2019

Exercise 1 (5 points)

Let A and B be two natural numbers. Follow the proof given below and identify which step(s) is (are) not valid

Step \#	Equation	Justification
1	$A=B$	We start with this assumption
2	$A x A=B x A$	Multiply by A on each side
3	$A^{2}-B^{2}=A B-B^{2}$	$A x A=A^{2} ; B x A=A x B$ (commutativity); substract B^{2} on both side
4	$(A-B)(A+B)=(A-B) B$	Identity: $A^{2}-B^{2}=(A-B)(A+B) ;$ factor B on right side
5	$A+B=B$	Simplify: divide by A - B on each side
6	$B+B=B$	From step $1, A=B$, therefore $A+B=B+B$
7	$2 B=B$	By definition, $B+B=2 B$
8	$2=1$	Simplify by B

Exercise 2 (15 points total-5 points each for a, b, and c)
 Hints:

- An integer number N is odd if it can be written in the form $\mathrm{N}=2 \mathrm{q}+1$, where q is an integer number
- An integer number N is even if it can be written in the form $\mathrm{N}=2 \mathrm{q}$, where q is an integer number
- An integer number N is a multiple of an integer number k if there exists an integer number q such that $\mathrm{N}=\mathrm{kq}$

Prove the following statements:
a) The sum of any three consecutive odd numbers is always a multiple of 3
b) The sum of any four consecutive odd numbers is always a multiple of 8
c) Prove that if you add the squares of two consecutive integer numbers and then add one, you always get an even number.

Exercise 3 (5 points)

Let x be a real number. Solve the equation $5^{2 x}-2\left(5^{x}\right)+1=0$.
Exercise 4 (20 points total-5 points each for a, b, c, and d)
Prove the following identities, where p, q, x, y, m, and n are real numbers:
a) $8(p-q)+4(p+q)=2(p+3 q)+10(p-q)$
b) $x(m-n)+y(n+m)=m(x+y)+n(y-x)$
c) $(x+3)(x+8)-(x-6)(x-4)=21 x$
d) $m^{8}-1=\left(m^{2}+1\right)\left(m^{2}-1\right)\left(m^{4}+1\right)$

Extra credit: (5 points)

Prove that if you add the cubes of two consecutive integer numbers and then add one, you always get an even number.

+ 3 points for submitting online!

