ECS20 Homework 1 Due January 15, 2019

Exercise 1 (5 points)

Let A and B be two natural numbers. Follow the proof given below and identify which step(s) is (are) not valid

Step #	Equation	Justification
1	A = B	We start with this assumption
2	AxA = BxA	Multiply by A on each side
3	A^2 - B^2 = AB - B^2	$AxA = A^2$; $BxA = AxB$
		(commutativity); substract B^2
		on both side
4	(A-B)(A+B)=(A-B)B	Identity: A^2 - B^2 =(A - B)(A + B);
		factor <i>B</i> on right side
5	A + B = B	Simplify: divide by <i>A-B</i> on
		each side
6	B+B=B	From step 1, $A = B$, therefore
		A+B=B+B
7	2B = B	By definition, $B+B = 2B$
8	2 = 1	Simplify by <i>B</i>

Exercise 2 (15 points total – 5 points each for a, b, and c) *Hints*:

- An integer number N is odd if it can be written in the form N = 2q + 1, where q is an integer number
- An integer number N is even if it can be written in the form N = 2q, where q is an integer number
- An integer number N is a multiple of an integer number k if there exists an integer number q such that N = kq

Prove the following statements:

a) The sum of any three consecutive odd numbers is always a multiple of 3

b) The sum of any four consecutive odd numbers is always a multiple of 8

c) Prove that if you add the squares of two consecutive integer numbers and then add one, you always get an even number.

Exercise 3 (5 points)

Let *x* be a real number. Solve the equation $5^{2x}-2(5^x)+1=0$.

Exercise 4 (20 points total – 5 points each for a, b, c, and d)

Prove the following identities, where *p*, *q*, *x*, *y*, *m*, and *n* are real numbers:

- a) 8(p-q)+4(p+q)=2(p+3q)+10(p-q)b) x(m-n)+y(n+m)=m(x+y)+n(y-x)c) (x+3)(x+8)-(x-6)(x-4)=21xd) $m^8-1=(m^2+1)(m^2-1)(m^4+1)$

Extra credit: (5 points)

Prove that if you add the cubes of two consecutive integer numbers and then add one, you always get an even number.

+ 3 points for submitting online!