Homework 6: due 2/19/2019

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
February 8, 2019

Exercise 1: total 20 points (5 points for each of a to d)

a) Show that $2 x-10$ is $\Theta(x)$.
b) Show that $4 x^{2}+8 x-6$ is $\Theta\left(x^{2}\right)$.
c) Show that $\left\lfloor x+\frac{2}{7}\right\rfloor$ is $\Theta(x)$.
d) Show that $\log _{4}(x)$ is $\Theta\left(\log _{7}(x)\right)$.

Exercise 2: 10 points

Show that x^{2} is $\mathcal{O}\left(x^{4}\right)$ but that x^{4} is not $\mathcal{O}\left(x^{2}\right)$.

Exercise 3: 10 points

Let a, and b be two strictly positive integers and let x be a real number. Show that:

$$
\left\lfloor\frac{\left\lfloor\frac{x}{a}\right\rfloor}{b}\right\rfloor=\left\lfloor\frac{x}{a b}\right\rfloor
$$

Exercise 4: 10 points

Let x be a positive real number. Solve $\lfloor x\lfloor x\rfloor\rfloor=5$.

Exercise 5: 10 points

Let n be a natural number. Show that if n is a perfect square, then $2 n$ is not a perfect square. (Reminder: a natural number a is a perfect square if there exists a natural number k such that $n=k^{2}$.)

Extra Credit: 5 points

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy:

$$
\forall(x, y) \in \mathbb{R}^{2}, f(x) f(y)+f(x+y)=x y
$$

