Homework 7: due 2/26/2019

ECS 20 (Winter 2019)

Patrice Koehl
koehl@cs.ucdavis.edu
February 20, 2019

Exercise 1: 10 points

a) Let a be a natural number strictly greater than 1 . Show that $\operatorname{gcd}(a, a-1)=1$.
b) Use the result of part a) to solve the Diophantine equation $a+3 b=a b$ where a and b are two positive integers.

Exercise 2: 20 points (10 for a), 10 for b))

a) Let a, b, and c be three integers. Show that the equation $a x+b y=c$ has at least one solution in \mathbb{Z}^{2} if and only if $\operatorname{gcd}(a, b) / c$.
b) A group of men and women spent $\$ 100$ in a store. Knowing that each man spent $\$ 7$, and each woman spent $\$ 6$, can you find how many men and how many women are in the group?

Exercise 3: 20 points (10 for a), 10 for $b)$)

a) Let a and b be two natural numbers. Show that if $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}\left(a, b^{2}\right)=1$.
b) Let a and b be two natural numbers. Show that if $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.

Exercise 4: 10 points

Let n be a natural number such that the remainder of the division of 5218 by n is 10 , and the remainder of the division of 2543 by n is 11 . What is n ?

Exercise 5: 10 points

Find all $(x, y) \in \mathbb{N}^{2}$ that satisfy the system of equations:

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=2340 \\
\operatorname{gcd}(x, y)=6
\end{array}\right.
$$

Exercise 6: 10 points

Let n be a natural number. We define $A=n-2$ and $B=n^{2}-6 n+13$. Show that $\operatorname{gcd}(A, B)=$ $\operatorname{gcd}(A, 5)$.

Exercise 7: 10 points

Let a and b be two natural numbers. Solve the equations $a^{2}-b^{2}=13$.

Extra Credit: 5 points

Let a and b be two natural numbers. Solve $\operatorname{gcd}(a, b)+\operatorname{lcm}(a, b)=b+9$.

