ECS20

Homework 8: Number theory and Summations Due March 5, 2019

Number theory:

Exercise 1 (10 points)

Let a, b and n be three positive integers with $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$. Show that $\operatorname{gcd}(a b, n)=1$

Exercise 2 (10 points)

Prove that there are no solutions in integers x and y to the equation $2 x^{2}+5 y^{2}=14$. (Hint: consider this equation modulo 5)

Exercise 3 (10 points each; 20 points total)

Use Fermat's little theorem to evaluate:
(i) $2^{302} \bmod 7$
(ii) $5^{123} \bmod 61$

Exercise 4 (10 points)

Let n be an integer. Show that if $n>3$ then $n, n+2$ and $n+4$ cannot all be prime

Sequence, Summation:

Exercise 5 (5 points each; total: 20 points)

Find the value of each of these sums (* means multiply):
a) $\sum_{j=0}^{8}\left(1+(-1)^{j}\right)$
b) $\sum_{j=0}^{8}\left(3^{j}-2^{j}\right)$
c) $\sum_{j=0}^{8}\left(2 * 3^{j}+3 * 2^{j}\right)$
d) $\sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)$

Exercise 6 (10 points)
Using the identity $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$, compute $\sum_{k=1}^{n} \frac{1}{k(k+1)}$, where n is a natural number

Exercise 7 (10 points)

Without using mathematical induction, show that $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all natural
numbers $n \geq 1$. (hint: assume that you know that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$, and compute $\sum_{i=1}^{n}(i+1)^{4}$ in two different ways)

Exercise 8 (10 points)

Without using mathematical induction, prove that:

$$
\sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4} \text { for all natural numbers } n \geq 1
$$

Extra credit (3 points)

Let a and b be two natural numbers.
a) Show that if $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}(a+b, a b)=1$
b) Show that if $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}\left(a^{2}+b^{2}, a b\right)=1$

