ECS20 Homework 8: Number theory and Summations Due March 5, 2019

Number theory:

Exercise 1 (10 points)

Let *a*, *b* and *n* be three positive integers with gcd(a,n) = 1 and gcd(b,n) = 1. Show that gcd(ab,n) = 1

Exercise 2 (10 points)

Prove that there are no solutions in integers x and y to the equation $2x^2+5y^2=14$. (*Hint:* consider this equation modulo 5)

Exercise 3 (10 points each; 20 points total)

Use Fermat's little theorem to evaluate:

(i) $2^{302} \mod 7$ (ii) $5^{123} \mod 61$

Exercise 4 (10 points)

Let *n* be an integer. Show that if n > 3 then *n*, n+2 and n+4 cannot all be prime

Sequence, Summation:

Exercise 5 (5 points each; total: 20 points)

Find the value of each of these sums (* means multiply):

a)
$$\sum_{j=0}^{8} (1 + (-1)^{j})$$

b) $\sum_{j=0}^{8} (3^{j} - 2^{j})$
c) $\sum_{j=0}^{8} (2 * 3^{j} + 3 * 2^{j})$
d) $\sum_{j=0}^{8} (2^{j+1} - 2^{j})$

Exercise 6 (10 points)

Using the identity $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$, compute $\sum_{k=1}^{n} \frac{1}{k(k+1)}$, where n is a natural number

Exercise 7 (10 points)

Without using mathematical induction, show that $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$ for all natural numbers $n \ge 1$. (hint: assume that you know that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, and compute $\sum_{i=1}^{n} (i+1)^4$ in two different ways)

Exercise 8 (10 points)

Without using mathematical induction, prove that:

$$\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
 for all natural numbers $n \ge 1$.

Extra credit (3 points)

Let *a* and *b* be two natural numbers.

- a) Show that if gcd(a,b) = 1 then gcd(a+b, ab) = 1
 b) Show that if gcd(a,b) = 1 then gcd(a²+b²,ab) = 1