Homework 9 (optional: won't be graded)

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
March 4, 2019

Exercise 1: 10 points

Using induction, show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

Exercise 2: 10 points

Using induction, show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.

Exercise 3: 10 points

Show that $\forall n \in \mathbb{N}, n>1, \sum_{i=1}^{n} \frac{1}{\bar{i}^{2}}<2-\frac{1}{n}$.

Exercise 4: 10 points

Show that $\forall n \in \mathbb{N}, n>3, n^{2}-7 n+12 \geq 0$.

Exercise 5: 10 points

Show that $\forall n \in \mathbb{N}, n>1$, a set S_{n} with n elements has $\frac{n(n-1)}{2}$ subsets that contain exactly two elements.

Exercise 6: 10 points

Find the flaw with the following proof that : $P(n): a^{n}=1$ for all non negative integer n, whenever a is a non zero real number:

- Basis step: $P(0)$ is true: $a^{0}=1$ is true, by definition of a^{0}
- Strong Inductive step: assume that $a^{j}=1$ for all non negative integers j with $j \leq k$. Then note that:

$$
a^{k+1}=\frac{a^{k} a^{k}}{a^{k-1}}=\frac{1 \times 1}{1}=1
$$

Therefore $P(k+1)$ is true.
The principle of proof by strong mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 0$.

Exercise 7: 10 points

Show that $\forall n \in \mathbb{N}$, 21 divides $4^{n+1}+5^{2 n-1}$.

Exercise 8: 10 points

Show that $\forall n \in \mathbb{N} f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ where f_{n} are the Fibonacci numbers.

Exercise 9: 10 points

Show that $\forall n \in \mathbb{N} f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$ where f_{n} are the Fibonacci numbers.

Extra Credit: 5 points

Show that $\forall n \in \mathbb{N}, n>1$, a set S_{n} with n elements has $\frac{n(n-1)(n-2)}{6}$ subsets that contain exactly three elements.

