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Exercise 1

a) Show that 2x− 10 is Θ(x).

One option is to prove that 2x− 10 is both O(x) and Ω(x). In this simple case however, we
directly “squeeze” 2x− 10 between two functions that are of order x. First, let us notice that
∀x ∈ R, 2x− 10 < 2x.

Second, we note that if x > 10, then x− 10 > 0 and therefore 2x− 10 > x

Summarizing: for x > 10, x < 2x− 10 < 2x. Therefore 2x− 10 is Θ(x).

b) Show that 4x2 + 8x− 6 is Θ(x2).

Again, one option is to prove that 4x2 + 8x− 6 is both O(x2) and Ω(x2). In this simple case
however, we directly “squeeze” 4x2 + 8x− 6 between two functions that are of order x2.

We note first that when 8x > 6, then 8x− 6 > 0, and therefore 4x2 + 8x− 6 > 4x2.

Second, we note that when 1 < x, x < x2, and therefore 8x < 8x2. We also have −6 < x2.
This leads to 4x2 + 8x− 6 < 13x2 when x > 1.

Summarizing: for x > 1, 4x2 < 4x2 + 8x− 6 < 13x2. Therefore 4x2 + 8x− 6 is Θ(x2).

c) Show that bx + 2
7c is Θ(x).

Again, we will “squeeze” bx + 2
7c between two functions that are of order x.

By definition of the function floor, bx + 2
7c ≤ x + 2

7 . If 2
7 < x, this leads to bx + 2

7c < 2x.

Similarly, x + 2
7 < bx + 2

7c+ 1, therefore x− 5
7 < bx + 2

7c.
If x > 1, then −x < −1; multiplying by 5

7 , −5x
7 < −5

7 , and adding x, we get 2x
7 < x − 5

7 ,
therefore 2x

5 < bx + 2
7c.

Summarizing: for x > 1, 2x
5 < bx + 2

7c < 2x. Therefore bx + 2
7c is Θ(x).

d) Show that log4(x) is Θ log7(x).

Notice first that log4(x) = log7(4) × log7(x). Since log4(x) and log7(x) only differ by a
(positive) constant, there are of the same order. Hence log4(x) is Θ(log7(x)).

1



Exercise 2

Show that x2 is O(x4) but that x4 is not O(x3).

a) Let us show that x2 is O(x4)

Let us assume that 1 < x. Since x > 0, we can multiply this inequality by x: x < x2, again:
x2 < x3 and finally x3 < x4. As x2 < x3 and x3 < x4, we have x2 < x4.

We have shown that there exists k (k = 1), and there exists C (C = 1), such that if x > k,
then x2 < Cx4: we can conclude that x2 is O(x4).

b) Let us show that x4 is not O(x2).

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x4 is
O(x2). By definition of O, this means that:

∃k ∈ R, ∃C ∈ R if x > k then |x4| < C|x2|.
Let D = max{2, k, C}. Therefore D > 1, D ≥ k, and D ≥ C.

Let x be a real number with x > D. Since D > 1, x > 1 and therefore x2 > x > D.

Since D ≥ k, we have x4 < Cx2 < Dx2. Since x > 0, we can divide this inequality by x2:
we get x2 < D. We have shown that x2 > D and x2 < D: we have reached a contradiction.
Therefore, the hypothesis, x4 is O(x2), is false. We can conclude that x4 is not O(x2).

Exercise 3

Let a, and b be two strictly positive integers and let x be a real number.. Show that:⌊⌊
x
a

⌋
b

⌋
=
⌊ x

ab

⌋

Let us define k =
⌊
x
a

⌋
and m =

⌊
x
ab

⌋
. By definition of floor, we have the two properties:

k ≤ x
a < k + 1

and
m ≤ x

ab < m + 1
Let us multiply the second inequalities by b:
bm ≤ x

a < b(m + 1)
We notice that:

k ≤ x
a and x

a < b(m + 1); therefore k < b(m + 1).
k ≤ x

a and bm ≤ x
a . Therefore k and bm are two integers smaller than x

a . By definition of floor, k
is the largest integer smaller that x

a . Therefore bm ≤ k.

Combining those two inequalities, we get bm ≤ k < b(m+1). After division by b, m < k
b < m+1.

Therefore m is the floor of k
b . Replacing m and k by their values, we get:

m =
⌊ x

ab

⌋
=

⌊
k

b

⌋
=

⌊⌊
x
a

⌋
b

⌋

The property is therefore true.
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Exercise 4

Let x be a positive real number. Solve bxbxcc = 5.

Let A = bxbxcc.
Since x ≥ 0, we do not need to worry about x being negative.
We notice first that if x ≥ 3, then bxc ≥ 3, and xbxc ≥ 9, therefore A ≥ 9.
Therefore possible solutions for x are between 0 and 3, 3 not included. We look at three cases:

a) 0 ≤ x < 1

In this case, bxc = 0 and A = 0. There are no solutions in this interval.

b) 1 ≤ x < 2

In this case, bxc = 1 and A = bxc = 1. There are no solutions in this interval.

c) 2 ≤ x < 3

In this case, bxc = 2 and A = b2xc. Since 2 ≤ x < 3, 4 ≤ 2x < 6. We distinguish two cases:

i) 4 ≤ 2x < 5, namely 2 ≤ x < 2.5. Then A = b2xc = 4; there are no solutions in this
interval.

ii) 5 ≤ 2x < 6, namely 2.5 ≤ x < 3. Then A = b2xc = 5; all values of x in this interval are
solutions.

In conclusion, all values of x ∈ [2.5, 3[ are solutions of the equation.

Exercise 5

Let n be a natural number. Show that if n is a perfect square, then 2n is not a perfect square.
We will do a proof by contradiction. The property is of the form P : p→ q, where p is “n is a

perfect square” and q is “2n is not a perfect square”. Assuming P is false is equivalent to assuming
that p is true AND q is false. Therefore:

p is true: there exists an integer k such that n = k2

q is false: there exists an integer l such that 2n = l2.
Since n > 0, k 6= 0 and l 6= 0. Replacing n with k2 in the second equality, we get,
2k2 = l2. Taking the square root, we get

√
2k = l.... but this would say that

√
2 is rational.

We have reached a contradiction: the property ¬P is therefore false, and then P is true.

Extra Credit

Find all functions f : R→ R that satisfy:
∀(x, y) ∈ R2, f(x)f(y) + f(x + y) = xy

As the property is true for all pairs of real number, it is true for (x, y) = (0, 0). Therefore:
f(0)2 + f(0) = 0
from which we deduce that f(0) = 0 or f(0) = −1.
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a) f(0) = 0

Applying the property to (x, y) = (a, 0), where a is a real number. we get f(a) = 0 for all a,
therefore f is the null function.

b) f(0) = −1

Applying the property to (x, y) = (1,−1), we get : f(1)f(−1)+f(0) = −1, i.e. f(1)f(−1) = 0,
i.e. f(1) = 0 or f(−1) = 0.

i) f(1) = 0.

We apply the property to (x, y) = (a−1, 1), we get: f(a−1)f(1)+f(a) = a−1, therefore
f(a) = a− 1

ii) f(−1) = 0

We apply the property to (x, y) = (a + 1,−1), we get: f(a + 1)f(−1) + f(a) = −a− 1,
therefore f(a) = −a− 1

We have found that if f satisfies the property, then f is one of the three following functions:
f1(x) = 0, f2(x) = x − 1 and f3(x) = −x − 1. We note however that f1(x) does not satisfy the
property: let (x, y) be two real numbers; f(x)f(y) + f(x+ y) = 0, while xy = 0 if and only if x = 0
or y = 0. For the other two functions,
f2(x)f2(y) + f2(x + y) = (x− 1)(y − 1) + x + y − 1 = xy
and
f3(x)f3(y) + f3(x + y) = (x + 1)(y + 1)− x− y − 1 = xy

Therefore f2 and f3 satisfy the property. They are the only solutions.
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