Homework 6 Solutions

ECS 20 (Winter 2019)

Patrice Koehl

koehl@cs.ucdavis.edu
February 13, 2019

Exercise 1

a) Show that $2 x-10$ is $\Theta(x)$.

One option is to prove that $2 x-10$ is both $\mathcal{O}(x)$ and $\Omega(x)$. In this simple case however, we directly "squeeze" $2 x-10$ between two functions that are of order x. First, let us notice that $\forall x \in \mathbb{R}, 2 x-10<2 x$.
Second, we note that if $x>10$, then $x-10>0$ and therefore $2 x-10>x$
Summarizing: for $x>10, x<2 x-10<2 x$. Therefore $2 x-10$ is $\Theta(x)$.
b) Show that $4 x^{2}+8 x-6$ is $\Theta\left(x^{2}\right)$.

Again, one option is to prove that $4 x^{2}+8 x-6$ is both $\mathcal{O}\left(x^{2}\right)$ and $\Omega\left(x^{2}\right)$. In this simple case however, we directly "squeeze" $4 x^{2}+8 x-6$ between two functions that are of order x^{2}.
We note first that when $8 x>6$, then $8 x-6>0$, and therefore $4 x^{2}+8 x-6>4 x^{2}$.
Second, we note that when $1<x, x<x^{2}$, and therefore $8 x<8 x^{2}$. We also have $-6<x^{2}$. This leads to $4 x^{2}+8 x-6<13 x^{2}$ when $x>1$.
Summarizing: for $x>1,4 x^{2}<4 x^{2}+8 x-6<13 x^{2}$. Therefore $4 x^{2}+8 x-6$ is $\Theta\left(x^{2}\right)$.
c) Show that $\left\lfloor x+\frac{2}{7}\right\rfloor$ is $\Theta(x)$.

Again, we will "squeeze" $\left\lfloor x+\frac{2}{7}\right\rfloor$ between two functions that are of order x.
By definition of the function floor, $\left\lfloor x+\frac{2}{7}\right\rfloor \leq x+\frac{2}{7}$. If $\frac{2}{7}<x$, this leads to $\left\lfloor x+\frac{2}{7}\right\rfloor<2 x$.
Similarly, $x+\frac{2}{7}<\left\lfloor x+\frac{2}{7}\right\rfloor+1$, therefore $x-\frac{5}{7}<\left\lfloor x+\frac{2}{7}\right\rfloor$.
If $x>1$, then $-x<-1$; multiplying by $\frac{5}{7},-\frac{5 x}{7}<-\frac{5}{7}$, and adding x, we get $\frac{2 x}{7}<x-\frac{5}{7}$, therefore $\frac{2 x}{5}<\left\lfloor x+\frac{2}{7}\right\rfloor$.
Summarizing: for $x>1, \frac{2 x}{5}<\left\lfloor x+\frac{2}{7}\right\rfloor<2 x$. Therefore $\left\lfloor x+\frac{2}{7}\right\rfloor$ is $\Theta(x)$.
d) Show that $\log _{4}(x)$ is $\Theta \log _{7}(x)$.

Notice first that $\log _{4}(x)=\log _{7}(4) \times \log _{7}(x)$. Since $\log _{4}(x)$ and $\log _{7}(x)$ only differ by a (positive) constant, there are of the same order. Hence $\log _{4}(x)$ is $\Theta\left(\log _{7}(x)\right)$.

Exercise 2

Show that x^{2} is $\mathcal{O}\left(x^{4}\right)$ but that x^{4} is not $\mathcal{O}\left(x^{3}\right)$.
a) Let us show that x^{2} is $\mathcal{O}\left(x^{4}\right)$

Let us assume that $1<x$. Since $x>0$, we can multiply this inequality by x : $x<x^{2}$, again: $x^{2}<x^{3}$ and finally $x^{3}<x^{4}$. As $x^{2}<x^{3}$ and $x^{3}<x^{4}$, we have $x^{2}<x^{4}$.
We have shown that there exists $k(k=1)$, and there exists $C(C=1)$, such that if $x>k$, then $x^{2}<C x^{4}$: we can conclude that x^{2} is $\mathcal{O}\left(x^{4}\right)$.
b) Let us show that x^{4} is not $\mathcal{O}\left(x^{2}\right)$.

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x^{4} is $\mathcal{O}\left(x^{2}\right)$. By definition of \mathcal{O}, this means that:
$\exists k \in \mathbb{R}, \exists C \in \mathbb{R}$ if $x>k$ then $\left|x^{4}\right|<C\left|x^{2}\right|$.
Let $D=\max \{2, k, C\}$. Therefore $D>1, D \geq k$, and $D \geq C$.
Let x be a real number with $x>D$. Since $D>1, x>1$ and therefore $x^{2}>x>D$.
Since $D \geq k$, we have $x^{4}<C x^{2}<D x^{2}$. Since $x>0$, we can divide this inequality by x^{2} : we get $x^{2}<D$. We have shown that $x^{2}>D$ and $x^{2}<D$: we have reached a contradiction. Therefore, the hypothesis, x^{4} is $\mathcal{O}\left(x^{2}\right)$, is false. We can conclude that x^{4} is not $\mathcal{O}\left(x^{2}\right)$.

Exercise 3

Let a, and b be two strictly positive integers and let x be a real number.. Show that:

$$
\left\lfloor\frac{\left\lfloor\frac{x}{a}\right\rfloor}{b}\right\rfloor=\left\lfloor\frac{x}{a b}\right\rfloor
$$

Let us define $k=\left\lfloor\frac{x}{a}\right\rfloor$ and $m=\left\lfloor\frac{x}{a b}\right\rfloor$. By definition of floor, we have the two properties: $k \leq \frac{x}{a}<k+1$
and
$m \leq \frac{x}{a b}<m+1$
Let us multiply the second inequalities by b:
$b m \leq \frac{x}{a}<b(m+1)$
We notice that:
$k \leq \frac{x}{a}$ and $\frac{x}{a}<b(m+1)$; therefore $k<b(m+1)$.
$k \leq \frac{x}{a}$ and $b m \leq \frac{x}{a}$. Therefore k and $b m$ are two integers smaller than $\frac{x}{a}$. By definition of floor, k is the largest integer smaller that $\frac{x}{a}$. Therefore $b m \leq k$.

Combining those two inequalities, we get $b m \leq k<b(m+1)$. After division by b, $m<\frac{k}{b}<m+1$. Therefore m is the floor of $\frac{k}{b}$. Replacing m and k by their values, we get:

$$
m=\left\lfloor\frac{x}{a b}\right\rfloor=\left\lfloor\frac{k}{b}\right\rfloor=\left\lfloor\frac{\left\lfloor\frac{x}{a}\right\rfloor}{b}\right\rfloor
$$

The property is therefore true.

Exercise 4

Let x be a positive real number. Solve $\lfloor x\lfloor x\rfloor\rfloor=5$.

Let $A=\lfloor x\lfloor x\rfloor\rfloor$.
Since $x \geq 0$, we do not need to worry about x being negative.
We notice first that if $x \geq 3$, then $\lfloor x\rfloor \geq 3$, and $x\lfloor x\rfloor \geq 9$, therefore $A \geq 9$.
Therefore possible solutions for x are between 0 and 3,3 not included. We look at three cases:
a) $0 \leq x<1$

In this case, $\lfloor x\rfloor=0$ and $A=0$. There are no solutions in this interval.
b) $1 \leq x<2$

In this case, $\lfloor x\rfloor=1$ and $A=\lfloor x\rfloor=1$. There are no solutions in this interval.
c) $2 \leq x<3$

In this case, $\lfloor x\rfloor=2$ and $A=\lfloor 2 x\rfloor$. Since $2 \leq x<3,4 \leq 2 x<6$. We distinguish two cases:
i) $4 \leq 2 x<5$, namely $2 \leq x<2.5$. Then $A=\lfloor 2 x\rfloor=4$; there are no solutions in this interval.
ii) $5 \leq 2 x<6$, namely $2.5 \leq x<3$. Then $A=\lfloor 2 x\rfloor=5$; all values of x in this interval are solutions.

In conclusion, all values of $x \in[2.5,3$ [are solutions of the equation.

Exercise 5

Let n be a natural number. Show that if n is a perfect square, then $2 n$ is not a perfect square.
We will do a proof by contradiction. The property is of the form $P: p \rightarrow q$, where p is " n is a perfect square" and q is " $2 n$ is not a perfect square". Assuming P is false is equivalent to assuming that p is true AND q is false. Therefore:
p is true: there exists an integer k such that $n=k^{2}$
q is false: there exists an integer l such that $2 n=l^{2}$.
Since $n>0, k \neq 0$ and $l \neq 0$. Replacing n with k^{2} in the second equality, we get,
$2 k^{2}=l^{2}$. Taking the square root, we get $\sqrt{2} k=l \ldots$ but this would say that $\sqrt{2}$ is rational. We have reached a contradiction: the property $\neg P$ is therefore false, and then P is true.

Extra Credit

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy:
$\forall(x, y) \in \mathbb{R}^{2}, f(x) f(y)+f(x+y)=x y$
As the property is true for all pairs of real number, it is true for $(x, y)=(0,0)$. Therefore: $f(0)^{2}+f(0)=0$
from which we deduce that $f(0)=0$ or $f(0)=-1$.
a) $f(0)=0$

Applying the property to $(x, y)=(a, 0)$, where a is a real number. we get $f(a)=0$ for all a, therefore f is the null function.
b) $f(0)=-1$

Applying the property to $(x, y)=(1,-1)$, we get : $f(1) f(-1)+f(0)=-1$, i.e. $f(1) f(-1)=0$, i.e. $f(1)=0$ or $f(-1)=0$.
i) $f(1)=0$.

We apply the property to $(x, y)=(a-1,1)$, we get: $f(a-1) f(1)+f(a)=a-1$, therefore $f(a)=a-1$
ii) $f(-1)=0$

We apply the property to $(x, y)=(a+1,-1)$, we get: $f(a+1) f(-1)+f(a)=-a-1$, therefore $f(a)=-a-1$

We have found that if f satisfies the property, then f is one of the three following functions: $f_{1}(x)=0, f_{2}(x)=x-1$ and $f_{3}(x)=-x-1$. We note however that $f_{1}(x)$ does not satisfy the property: let (x, y) be two real numbers; $f(x) f(y)+f(x+y)=0$, while $x y=0$ if and only if $x=0$ or $y=0$. For the other two functions,
$f_{2}(x) f_{2}(y)+f_{2}(x+y)=(x-1)(y-1)+x+y-1=x y$
and
$f_{3}(x) f_{3}(y)+f_{3}(x+y)=(x+1)(y+1)-x-y-1=x y$
Therefore f_{2} and f_{3} satisfy the property. They are the only solutions.

