Homework 6 Solutions

ECS 20 (Winter 2019)

Patrice Koehl koehl@cs.ucdavis.edu

February 13, 2019

Exercise 1

a) Show that 2x - 10 is $\Theta(x)$.

One option is to prove that 2x - 10 is both $\mathcal{O}(x)$ and $\Omega(x)$. In this simple case however, we directly "squeeze" 2x - 10 between two functions that are of order x. First, let us notice that $\forall x \in \mathbb{R}, 2x - 10 < 2x$.

Second, we note that if x > 10, then x - 10 > 0 and therefore 2x - 10 > x

Summarizing: for x > 10, x < 2x - 10 < 2x. Therefore 2x - 10 is $\Theta(x)$.

b) Show that $4x^2 + 8x - 6$ is $\Theta(x^2)$.

Again, one option is to prove that $4x^2 + 8x - 6$ is both $\mathcal{O}(x^2)$ and $\Omega(x^2)$. In this simple case however, we directly "squeeze" $4x^2 + 8x - 6$ between two functions that are of order x^2 .

We note first that when 8x > 6, then 8x - 6 > 0, and therefore $4x^2 + 8x - 6 > 4x^2$.

Second, we note that when 1 < x, $x < x^2$, and therefore $8x < 8x^2$. We also have $-6 < x^2$. This leads to $4x^2 + 8x - 6 < 13x^2$ when x > 1.

Summarizing: for x > 1, $4x^2 < 4x^2 + 8x - 6 < 13x^2$. Therefore $4x^2 + 8x - 6$ is $\Theta(x^2)$.

c) Show that $\lfloor x + \frac{2}{7} \rfloor$ is $\Theta(x)$.

Again, we will "squeeze" $\lfloor x + \frac{2}{7} \rfloor$ between two functions that are of order x. By definition of the function floor, $\lfloor x + \frac{2}{7} \rfloor \leq x + \frac{2}{7}$. If $\frac{2}{7} < x$, this leads to $\lfloor x + \frac{2}{7} \rfloor < 2x$. Similarly, $x + \frac{2}{7} < \lfloor x + \frac{2}{7} \rfloor + 1$, therefore $x - \frac{5}{7} < \lfloor x + \frac{2}{7} \rfloor$. If x > 1, then -x < -1; multiplying by $\frac{5}{7}$, $-\frac{5x}{7} < -\frac{5}{7}$, and adding x, we get $\frac{2x}{7} < x - \frac{5}{7}$, therefore $\frac{2x}{5} < \lfloor x + \frac{2}{7} \rfloor$. Summarizing: for x > 1, $\frac{2x}{5} < \lfloor x + \frac{2}{7} \rfloor < 2x$. Therefore $\lfloor x + \frac{2}{7} \rfloor$ is $\Theta(x)$.

d) Show that $\log_4(x)$ is $\Theta \log_7(x)$.

Notice first that $\log_4(x) = \log_7(4) \times \log_7(x)$. Since $\log_4(x)$ and $\log_7(x)$ only differ by a (positive) constant, there are of the same order. Hence $\log_4(x)$ is $\Theta(\log_7(x))$.

Exercise 2

Show that x^2 is $\mathcal{O}(x^4)$ but that x^4 is not $\mathcal{O}(x^3)$.

a) Let us show that x^2 is $\mathcal{O}(x^4)$

Let us assume that 1 < x. Since x > 0, we can multiply this inequality by x: $x < x^2$, again: $x^2 < x^3$ and finally $x^3 < x^4$. As $x^2 < x^3$ and $x^3 < x^4$, we have $x^2 < x^4$.

We have shown that there exists k (k = 1), and there exists C (C = 1), such that if x > k, then $x^2 < Cx^4$: we can conclude that x^2 is $\mathcal{O}(x^4)$.

b) Let us show that x^4 is not $\mathcal{O}(x^2)$.

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x^4 is $\mathcal{O}(x^2)$. By definition of \mathcal{O} , this means that:

 $\exists k \in \mathbb{R}, \exists C \in \mathbb{R} \text{ if } x > k \text{ then } |x^4| < C|x^2|.$

Let $D = \max\{2, k, C\}$. Therefore $D > 1, D \ge k$, and $D \ge C$.

Let x be a real number with x > D. Since D > 1, x > 1 and therefore $x^2 > x > D$.

Since $D \ge k$, we have $x^4 < Cx^2 < Dx^2$. Since x > 0, we can divide this inequality by x^2 : we get $x^2 < D$. We have shown that $x^2 > D$ and $x^2 < D$: we have reached a contradiction. Therefore, the hypothesis, x^4 is $\mathcal{O}(x^2)$, is false. We can conclude that x^4 is not $\mathcal{O}(x^2)$.

Exercise 3

Let a, and b be two strictly positive integers and let x be a real number. Show that:

$$\left|\frac{\left\lfloor \frac{x}{a} \right\rfloor}{b}\right| = \left\lfloor \frac{x}{ab} \right\rfloor$$

Let us define $k = \lfloor \frac{x}{a} \rfloor$ and $m = \lfloor \frac{x}{ab} \rfloor$. By definition of floor, we have the two properties: $k \leq \frac{x}{a} < k+1$

and $m \le \frac{x}{ab} < m+1$

Let us multiply the second inequalities by b:

 $bm \le \frac{x}{a} < b(m+1)$

We notice that:

 $k \leq \frac{x}{a}$ and $\frac{x}{a} < b(m+1)$; therefore k < b(m+1).

 $k \leq \frac{x}{a}$ and $bm \leq \frac{x}{a}$. Therefore k and bm are two integers smaller than $\frac{x}{a}$. By definition of floor, k is the largest integer smaller that $\frac{x}{a}$. Therefore $bm \leq k$.

Combining those two inequalities, we get $bm \le k < b(m+1)$. After division by b, $m < \frac{k}{b} < m+1$. Therefore *m* is the floor of $\frac{k}{b}$. Replacing *m* and *k* by their values, we get:

.

$$m = \left\lfloor \frac{x}{ab} \right\rfloor = \left\lfloor \frac{k}{b} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{x}{a} \right\rfloor}{b} \right\rfloor$$

The property is therefore true.

Exercise 4

Let x be a positive real number. Solve |x|x|| = 5.

Let A = |x|x||.

Since $x \ge 0$, we do not need to worry about x being negative.

We notice first that if $x \ge 3$, then $|x| \ge 3$, and $x|x| \ge 9$, therefore $A \ge 9$.

Therefore possible solutions for x are between 0 and 3, 3 not included. We look at three cases:

a) $0 \le x < 1$

In this case, |x| = 0 and A = 0. There are no solutions in this interval.

b) $1 \le x < 2$

In this case, $\lfloor x \rfloor = 1$ and $A = \lfloor x \rfloor = 1$. There are no solutions in this interval.

c) $2 \le x < 3$

In this case, $\lfloor x \rfloor = 2$ and $A = \lfloor 2x \rfloor$. Since $2 \le x < 3, 4 \le 2x < 6$. We distinguish two cases:

- i) $4 \le 2x < 5$, namely $2 \le x < 2.5$. Then $A = \lfloor 2x \rfloor = 4$; there are no solutions in this interval.
- ii) $5 \le 2x < 6$, namely $2.5 \le x < 3$. Then $A = \lfloor 2x \rfloor = 5$; all values of x in this interval are solutions.

In conclusion, all values of $x \in [2.5, 3]$ are solutions of the equation.

Exercise 5

Let n be a natural number. Show that if n is a perfect square, then 2n is not a perfect square.

We will do a proof by contradiction. The property is of the form $P: p \to q$, where p is "n is a perfect square" and q is "2n is not a perfect square". Assuming P is false is equivalent to assuming that p is true AND q is false. Therefore:

p is true: there exists an integer k such that $n = k^2$

q is false: there exists an integer l such that $2n = l^2$.

Since n > 0, $k \neq 0$ and $l \neq 0$. Replacing n with k^2 in the second equality, we get,

 $2k^2 = l^2$. Taking the square root, we get $\sqrt{2}k = l...$ but this would say that $\sqrt{2}$ is rational. We have reached a contradiction: the property $\neg P$ is therefore false, and then P is true.

Extra Credit

Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy: $\forall (x, y) \in \mathbb{R}^2, f(x)f(y) + f(x + y) = xy$

As the property is true for all pairs of real number, it is true for (x, y) = (0, 0). Therefore: $f(0)^2 + f(0) = 0$

from which we deduce that f(0) = 0 or f(0) = -1.

a) f(0) = 0

Applying the property to (x, y) = (a, 0), where a is a real number. we get f(a) = 0 for all a, therefore f is the null function.

b) f(0) = -1

Applying the property to (x, y) = (1, -1), we get : f(1)f(-1)+f(0) = -1, i.e. f(1)f(-1) = 0, i.e. f(1) = 0 or f(-1) = 0.

i) f(1) = 0.

We apply the property to (x, y) = (a-1, 1), we get: f(a-1)f(1) + f(a) = a-1, therefore f(a) = a - 1

ii) f(-1) = 0

We apply the property to (x, y) = (a + 1, -1), we get: f(a + 1)f(-1) + f(a) = -a - 1, therefore f(a) = -a - 1

We have found that if f satisfies the property, then f is one of the three following functions: $f_1(x) = 0$, $f_2(x) = x - 1$ and $f_3(x) = -x - 1$. We note however that $f_1(x)$ does not satisfy the property: let (x, y) be two real numbers; f(x)f(y) + f(x+y) = 0, while xy = 0 if and only if x = 0 or y = 0. For the other two functions,

 $f_2(x)f_2(y) + f_2(x+y) = (x-1)(y-1) + x + y - 1 = xy$ and

 $f_3(x)f_3(y) + f_3(x+y) = (x+1)(y+1) - x - y - 1 = xy$

Therefore f_2 and f_3 satisfy the property. They are the only solutions.