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Exercise 1

a) Let a be a natural number strictly greater than 1. Show that gcd(a, a− 1) = 1.

b) Use the result of part a) to solve the Diophantine equation a+ 3b = ab where a and b are two
positive integers.

a) We do a proof by contradiction. Let a be a natural number strictly greater than 1 and let us
suppose that gcd(a, a− 1) = k with k > 1.
Then there exist two positive integers m and n, such that a = mk and a− 1 = nk.
Then

a− (a− 1) = mk − nk = (m− n)k

and at the same time

a− (a− 1) = 1

Therefore (m− n)k = 1, i.e. k is a divisor of 1, but k > 1 (our hypothesis): we have reached
a contradiction. Therefore, gcd(a, a− 1) = 1

b) We want to solve the equation a + 3b = ab, were a and b are positive integers.
We look at three cases:

i) b = 0. The equation becomes a = 0.

ii) b = 1. The equation becomes a + 2 = a, which does not have a solution

ii) b > 1.
From a + 3b = ab, we get 3b = ab− a = a(b− 1). Therefore b− 1 divides 3b. From part
a), we know that gcd(b, b − 1) = 1. According to Gauss’s theorem, we have (b − 1)/3,
meaning that b = 2 or b = 4
Replacing in the original equation, we get a = 6 in the first case, and a = 4 in the second
case.

The set of solutions is therefore {(0, 0), (6, 2), (4, 4)}.
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Exercise 2

a) Let a, b, and c be three integers. Show that the equation ax+ by = c has at least one solution
if and only if gcd(a, b)/c.

b) A group of men and women spent $100 in a store. Knowing that each man spent $8, and
each woman spent $5, can you find how many men and how many women are in the group?

a) Let a, b, and c be three integers. We need to prove a biconditional p↔ q, where p and q are
the two propositions:

p: The equation ax + by = c has at least one solution (x1, y1)

and

q : gcd(a, b)/c

Proving p ↔ q is equivalent to proving p → q and q → p. We will use direct proofs for both
implications.

a) p→ q

Hypothesis: p is true, namely, the equation ax+by = c has at least one solution (x1, y1).
Therefore ax1 + by1 = c.

Let g = gcd(a, b): g divides a and g divides b. Therefore, there exists two integers k and
l such that a = gk and b = gl. Replacing in the equation above, we get:

gkx1 + gly1 = c

which we rewrite as:

g(kx1 + ly1) = c

Since kx1 + ly1 is an integer, g divides c, namely q is true.

b) q → p

Hypothesis: q is true, namely gcd(a, b)/c.

Let g = gcd(a, b). Since g/c, there exists an integer m such that c = mg.

Also, based on Bezout’s identity, there exists two integers k and l such that g = ka+ lb.

Multiplying this equation by m, we get mg = kma + lmb, i.e. c = kma + lmb. We have
therefore found a pair (x1, y1) with x1 = km and y1 = lm such that ax1 + by1 = c: p is
true.

In conclusion, p↔ q ia true.

b) Let n be the number of men, and let m be the number of women. From the text of the
problem, we know that

7n + 6m = 100

We notice first that gcd(7, 6) = 1; since 1 divides 100, from a) we deduce that there is a
solution to the problem.
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Since gcd(7, 6) = 1, according to Bezout we know that there are two integers u0 and v0 such
that:

7u + 6v = 1

We can choose for example u0 = 1 and v0 = −1. Multiplying the equation above by 100, we
get:

7(100u0) + 6(100v0) = 100

whose solutions are therefore n0 = 100u0 = 100 and m0 = 100v0 = −100. All solutions are of
the form n = n0 − 6k = 100− 6k and m = m0 + 7k = −100 + 7k where k is an integer, and
n ≥ 0 and m ≥ 0. Since n ≥ 0, k ≤ 16. Since m ≥ 0, k ≥ 15. There are therefore 2 solutions
for k = 15 and 16: S = {(10, 5), (4, 12)}.

Exercise 3

a) Let a and b be two natural numbers. Show that if gcd(a, b) = 1 then gcd(a, b2) = 1.

Let a and b be two natural numbers such that gcd(a, b) = 1. According to Bezout’s identity,
there exist two integers k and l such that ak + bl = 1. Multiplying by b, we get abk + b2l = b.

Let g = gcd(a, b2). By definition of gcd, there exists two integers u and v such that a = ug
and b2 = vg. Replacing in the equation above, we get gubk + gvl = b. Hence, g divides
b. Since g also divides a, g is a common divisor of a and b. Since gcd(a, b) = 1, the only
possibility is g = 1, therefore gcd(a, b2) = 1, which concludes the proof.

b) Let a and b be two natural numbers. Show that if gcd(a, b) = 1 then gcd(a2, b2) = 1.

Let a and b be two natural numbers such that gcd(a, b) = 1. According to question a), we
know that gcd(a, b2) = 1, which we can rewrite as gcd(b2, a). Applying again the property of
a) to b2 and a, we get gcd(b2, a2) = 1, therefore gcd(a2, b2) = 1.

Exercise 4

Let n be a natural number such that the remainder of the division of 5218 by n is 10, and the
remainder of the division of 2543 by n is 11. What is n?

We note first that n divides 5218 − 10 = 5208 and n divides 2543 − 11 = 2532. Therefore n
divides the gcd(5208, 2532) = 3×22 = 12. Therefore n = 2, 3, 4, 6, or12 (we can exclude 1!). We can
exclude 2, 3, 4 and 6 as 10 and 11 should both be smaller than n. We notice that 5218 = 12∗434+10,
and 2543 = 211× 12 + 11. The answer is n = 12.

Exercise 5

Find all (x, y) ∈ N2 that satisfy the system of equations:{
x2 − y2 = 2340

gcd(x, y) = 6

3



Let x and y be two natural number and let g = gcd(x, y). By definition of gcd, there exists two
integers u and v such that x = gu and y = gv. Since g = 6, x = 6u and y = 6v. Replacing in the
first equation of the system, we get:

x2 − y2 = 36(u2 − v2) = 2340

Therefore,

(u− v)(u + v) = 65

Since 65 = 1×5×13, the possible solutions for u−v and u+v are S = {(1, 65), (5, 13), (13, 5), (65, 1)}.
Let us look at all 4 cases:

a) {
u− v = 1

u + v = 65

Then u = 33 and v = 32, i.e. x = 198 and y = 192.

b) {
u− v = 5

u + v = 13

Then u = 9 and v = 4, i.e. x = 54 and y = 24.

c) {
u− v = 13

u + v = 5

Then u = 9 and v = −4, i.e. x = 54 and y = −24. This is not a solution as x and y need to
be natural numbers.

d) {
u− v = 65

u + v = 1

Then u = 33 and v = −32, i.e. x = 198 and y = −192. This is not a solution as x and y need
to be natural numbers.

.
Therefore the only solutions are S = {(198, 192), (54, 24)}.
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Exercise 6

Let n be a natural number. We define A = n − 2 and B = n2 − 6n + 13. Show that gcd(A,B) =
gcd(A, 5).

Let us define g1 = gcd(A,B) and g2 = gcd(A, 5). We will show that g1 ≤ g2 and g2 ≤ g1.

a) Let us show that g1 ≤ g2.

We first notice that by definition, g1/A and g1/B. Therefore, g1 divides any combinations
of A and B. Now let us notice that:

A2 = n2 − 4n + 4

Therefore

B = A2 − 2n + 9 = A2 − 2A + 5

As g1 divides B −A2 + 2A, g1 divides 5. Therefore g1 divides A and g1 divides 5, g1 ≤ g2.

a) Let us show that g2 ≤ g1.

We first notice that by definition, g2/A and g2/5. Since B = A2 − 2A + 5, and g2 divides
A2 − 2A + 5, g2 divides B. Therefore g2 divides A and g2 divides B, g2 ≤ g1.

In conclusion, g1 = gcd(A,B) = g2 = gcd(A, 5).

Exercise 7

Let a and b be two natural numbers. Solve the equations a2 − b2 = 13.
We can rewrite the equation as

(a− b)(a + b) = 13

The solutions for (a + b) and (a− b) are therefore S = {(1, 13), (13, 1)}. Let us look at all 2 cases:

a) {
a− b = 1

a + b = 13

Then a = 7 and b = 6.

b) {
a− b = 13

a + b = 1

Then a = 7 and b = −6. Since b needs to be a natural number, this is not a solution.

The only solution is (7,6).
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Extra Credit

Let a and b be two natural numbers. Solve gcd(a, b) + lcm(a, b) = b + 9.

We want to solve gcd(a, b) + lcm(a, b) = b + 9, where a and b are two natural numbers (i.e.
positive non zero integers).
As written, the equation looks very complicated. Let us transform it to make it more tractable.
Most terms in the equation can be written as multiples of g = gcd(a, b):
Since g is a divisor of a and b, there exists non-zero integers m and n such a = mg and b = ng. We
also know that g.lcm(a, b) = ab, then g.lcm(a, b) = g.g.mn and therefore lcm(a, b) = gmn.
Replacing in the equation, we get: g+ gmn = gn+ 9, which can be rewritten as g(1 +mn−n) = 9.

This shows that g divides 9. There are 3 possibilities for g: g = 1, or g = 3 or g = 9:

1) g = 1. The equation becomes lcm(a, b) = b + 8, with lcm(a, b) = ab. Then ab = b + 8, or
b(a− 1) = 8. Then b is a divisor of 8, i.e. b = 1, b = 2, b = 4 or b = 8.

• b = 1: a− 1 = 8 then a = 9. (9, 1) is one solution of the equation.

• b = 2: a− 1 = 4 then a = 5. (5, 2) is another solution of the equation.

• b = 4: a− 1 = 2 then a = 3. (3, 4) is another solution of the equation.

• b = 8: a − 1 = 1 then a = 2. This would imply gcd(a, b) = 2, which is in contradiction
with g = 1. This case does not yield any new solutions .

2) g = 3. The equation becomes lcm(a, b) = b + 6. lcm(a, b) is a multiple of b: lcm(a, b) = mb,
hence b(m − 1) = 6. Hence b divides 6, i.e. b = 1, b = 2, b = 3 or b = 6. Since b ≥ g, we
cannot have in this case b = 1 or b = 2. We need to check two cases:

• If b = 3, then the equation becomes 3 + lcm(a, b) = 3 + 9, i.e. lcm(a, b) = 9. Since
lcm(a, b) is a multiple of a, we find that a divides 9. We also know that a is a multiple
of 3, as g = 3 is a divisor of a. Then a = 3 or a = 9. We cannot have a = 3 (since we
would have lcm(a, b) = 3), hence a = 9. (9, 3) is another solution of the equation.

• If b = 6, the equation becomes 3 + lcm(a, b) = 6 + 9, hence lcm(a, b) = 12. As above, a
is a multiple of 3 and a divides 12. If a = 3 or a = 6, the we would have lcm(a, b) = 6
NO. If a = 12, then gcd(a, b) = 6: NO. In this case, we do not have new solutions.

3) g = 9. The equation becomes lcm(a, b) = b. Since lcm(a, b). gcd(a, b) = ab, we get 9b = ab, i.e.
a = 9 (we do not have to consider b=0, as we look for natural numbers). Since lcm(a, b) = b
is a multiple of a, there exists k > 0 such that b = 9k. All values of k > 0 are possible.

In conclusion, the solutions are: {(9, 1), (5, 2), (3, 4), (9, 3), (9, 9k)} where all values of (k > 0) are
possible.
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