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Exercise 1: (10 points)

Let a, b and n be three positive integers with gcd(a, n) = 1 and gcd(b, n) = 1. Show that gcd(ab, n) =
1

Let a, b, and n be three integers such that gcd(a, n) = 1 and gcd(b, n) = 1.
Since gcd(a, n) = 1, according to Bezout’s identity, there exist two integers k and l such that
ka + ln = 1. Multiplying by b, we get kab + lnb = b.
Let g = gcd(ab, n). As g divides ab and n, there exists u and v such that ab = ug and n = vg.
Replacing in the equation above, we get kgu + lvgb = b, or g(ku + lvb) = b. Hence, g divides b.
Since g also divides n, g is a common divisor of b and n. b and n being co-prime, the only possibility
is g = 1, and therefore gcd(ab, n) = 1, which concludes the proof.

Exercise 2 (10 points)

Prove that there are no solutions in integers x and y to the equation 2x2+5y2 = 14. (Hint: consider
this equation modulo 5)

We consider the equation 2x2 + 5y2 = 14. Let us follow the hint:
Since 5 ≡ 0(mod 5), 5y2 ≡ 0(mod 5). Hence 2x2 + 5y2 ≡ 2x2(mod 5).
Let us write x = 5q + r, with 0 ≤ r ≤ 4. Then x2 = 25q2 + 10q + r2, and therefore x2 ≡ r2(mod 5),
and 2x2 ≡ 2r2(mod 5). For r = 0, 1, 2, 3, 4, we get 2x2 ≡ 0, 2, 3, 3, 2(mod 5), respectively.
On the other hand, 14 ≡ 4(mod 5). Therefore we cannot have 2x2 + 5y2 ≡ 14(mod 5), and the
equation does not have any solution.

Exercise 3 (total: 20 points)

Use Fermat’s little theorem to evaluate:

(i) 2302 mod 7: Let us divide 302 by 7: 302 = 7*43+1. Then 2302 = 27∗43+1 = 2 ∗ (243)7.
Since 7 is prime, according to Fermat’s little theorem, (243)7 ≡ 243(mod 7), and therefore
2302 ≡ 244(mod 7).
Let us repeat the procedure: 44=7*6+2. Then 244 = 2∗ (26)7. Using Fermat’s little theorem,
we get (26)7 ≡ 26(mod 7) and therefore 244 ≡ 28(mod 7).
According to Fermat’s little theorem, 27 ≡ 2(mod 7), and therefore 28 ≡ 4(mod 7).
Combining all these, we conclude that 2302 ≡ 4(mod 7).
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(ii) 5123 mod 61: First, we know that 61 is prime. Let us divide 123 by 61: 123=2*61+1.
Then 5123 = 5 ∗ (52)61. According to Fermat’s little theorem, (52)61 ≡ 52(mod 61), hence
5123 ≡ 53(mod 61). Since 53 = 125 = 2∗61+3, 53 ≡ 3(mod 61), and hence 5123 ≡ 3(mod 61).

Exercise 4 (10 points)

Let n be an integer. Show that if n > 3 then n, n + 2 and n + 4 cannot all be prime
Let n be an integer. We consider the division of n by 3: there exists two integer k and r, with

r = 0, 1 or 2, such that n = 3k + r. Let us consider the three cases:

a) r = 0 then n = 3k and since n > 3, n is a multiple of 3 and is not prime.

b) r = 1 i.e. n = 3k + 1. Then, n + 2 = 3k + 3 = 3(k + 1), which is not a prime.

c) r = 2, i.e. n = 3k + 2, then n + 1 = 3k + 3 = 3(k + 1), is not a prime.

Therefore if n is greater than 3, n, n + 2 and n + 4 cannot all be prime.

Exercise 5 (total: 20 points)

Find the value of each of these sums:
There are two ways to solve these 4 problems: a systematic way, where we compute each term

of the sequence explicitly, and sum them, or we use the closed forms for the sums of geometric
sequences. Both are perfectly correct. Since I assume you have no problem with the first approach,
I will describe the second. It is based on the property:

N∑
i=0

ari = a
rN+1 − 1

r − 1
if r 6= 1

N∑
i=0

ari = a(n + 1) if r = 1

a)

8∑
j=0

(1 + (−1)j) =

8∑
j=0

1 +

8∑
j=0

(−1)j

= 9 +
(−1)9 − 1

−1− 1

= 9 +
−1− 1

−1− 1
= 10

b)

8∑
j=0

(3j − 2j) =
8∑

j=0

3j −
8∑

j=0

2j

=
39 − 1

3− 1
− 29 − 1

2− 1
= 9841− 511 = 9330
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c)

8∑
j=0

(2.3j + 3.2j) = 2

8∑
j=0

3j + 3

8∑
j=0

2j

= 2
39 − 1

3− 1
+ 3

29 − 1

2− 1
= 2 ∗ 9841 + 3 ∗ 511 = 21215

d)

8∑
j=0

(2j+1 − 2j) =

8∑
j=0

2j(2− 1)

=
8∑

j=0

2j

=
29 − 1

2− 1
= 511

Exercise 6 (10 points)

Using the identity
1

k(k + 1)
=

1

k
− 1

k + 1
, compute

∑
k=1 n

1
k(k+1)

This is straightforward based on the hint that is provided:
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1
)

=
n∑

k=1

1

k
−

n∑
k=1

1

k + 1

Making the change of indices j = k + 1 in the second sum, we get:

n∑
k=1

1

k(k + 1)
=

n∑
k=1

1

k
−

n+1∑
j=2

1

j

=

n∑
k=1

1

k
− (

n∑
j=1

1

j
+

1

n + 1
− 1)

= 1− 1

n + 1

=
n

n + 1

Exercise 7 (10 points)

Without using mathematical induction, show that

n∑
i=1

i3 =

(
n(n + 1)

2

)2

.

Let S1 =
n∑

i=1

i =
n(n + 1)

2
, S2 =

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, and let S3 =

n∑
i=1

i3. As indicated in

the hint, we compute S =
∑n

i=1(i + 1)4 in 2 different ways:
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a) We develop (i + 1)4:

S =
n∑

i=1

(i + 1)4

=
n∑

i=1

(i4 + 4i3 + 6i2 + 4i + 1)

=
n∑

i=1

i4 + 4S3 + 6S2 + 4S1 + n

b) We make the change of variables j = i + 1:

S =

n∑
i=1

(i + 1)4

=
n+1∑
j=2

j4

=
n∑

j=1

j4 + (n + 1)4 − 1

Therefore,

n∑
i=1

i4 + 4S3 + 6S2 + 4S1 + n =
n∑

j=1

j4 + (n + 1)4 − 1

The sums of i4 cancel out, and we get:

4S3 = (n + 1)4 − 6S2 − 4S1 − n− 1

= n4 + 4n3 + 6n2 + 4n + 1− n(n + 1)(2n + 1)− 2n(n + 1)− n− 1

= n4 + 4n3 + 6n2 + 4n− (n2 + n)(2n + 1)− 2n2 − 2n− n

= n4 + 4n3 + 6n2 + 4n− 2n3 − 3n2 − n− 2n2 − 3n

= n4 + 2n3 + n2

= n2(n + 1)2

Therefore,

S3 =

(
n(n + 1)

2

)2

Exercise 8 (10 points)

Without using mathematical induction, prove that

n∑
i=1

i(i + 1)(i + 2) =
n(n + 1)(n + 2)(n + 3)

4
for

all integer n ≥ 1.
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This problem is easy and can be solved using the results given in the previous problem (exercise
7). Using the notations from that problem, notice that

n∑
i=1

i(i + 1)(i + 2) =
n∑

i=1

(i3 + 3i2 + 2i)

= S3 + 3S2 + 2S1

where S1 =
n∑

i=1

i =
n(n + 1)

2
, S2 =

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, and S3 =

n∑
i=1

i3 =

(
n(n + 1)

2

)2

.

Therefore

n∑
i=1

i(i + 1)(i + 2) =
n2(n + 1)2

4
+

n(n + 1)(2n + 1)

2
+

n(n + 1)

2

=
n2(n + 1)2 + 2n(n + 1)(2n + 1) + 4n(n + 1)

4

=
n(n + 1)[n(n + 1) + 2(2n + 1) + 4]

4

=
n(n + 1)[n2 + 5n + 6]

4

=
n(n + 1)(n + 2)(n + 3)

4

Extra credit (3 points)

Let a and b be two natural numbers.

a) Show that if gcd(a, b) = 1 then gcd(a + b, ab) = 1

We use a proof by contradiction. We suppose that there exists two natural numbers a and b
such that gcd(a, b) = 1 and gcd(a + b, ab) 6= 1.

Since gcd(a + b, ab) 6= 1, there exists a natural number k, with k > 1 such that k = gcd(a +
b, ab). Since k > 1, according to the fundamental theorem of arithmetics, it can be written
as a product of prime number. Let p be one of the prime numbers. We have p/k, and since
k/ab, p/ab. Since p is prime and p/ab, according to Euclid’s theorem, p/a or p/b.

If p/a, since p/(a+b), p/(a+b)−a, therefore p/b. Similarly, If p/b, since p/(a+b), p/(a+b)−b,
therefore p/a.

In all cases, we have that p/a and p/b. Therefore p ≤ gcd(a, b), but gcd(a, b) = 1. This is a
contradiction as p is prime. Therefore the property is true.

b) Show that if gcd(a, b) = 1 then gcd(a2 + b2, ab) = 1

We use a direct proof. Based on part a), as gcd(a, b) = 1, we have gcd(a + b, ab) = 1.
According to Bezout’s identity, there exists two integers l and m such that

(a + b)l + abm = 1

Squaring this equation, we get:

(a2 + b2)l2 + (ab)2m2 + 2abl = 1
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Now, let h = gcd(a2 + b2, ab). Then h/(a2 + b2) and h/ab. There exists two integers u and v
such that a2 + b2 = hu and ab = hv. Replacing in the equation above, we get:

hul2 + h2v2m2 + 2hvl = 1

i.e.

h(ul2 + hv2m2 + 2vl) = 1

This means that h/1, and therefore h = 1.
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