Homework 9 (optional): Solutions

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
March 4, 2019

Exercise 1

Show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$. Let us also define LHS $(n)=\sum_{i=1}^{n} i^{3}$ and $R H S(n)=\left(\frac{n(n+1)}{2}\right)^{2}$

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
& \text { LHS }(1)=\sum_{i=1}^{1} i^{3}=1 \\
& \text { RHS }(1)=\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=1
\end{aligned}
$$

- Inductive step: Let k be a positive integer $(k \leq 0)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Let us compute $\operatorname{LHS}(k+1)=\sum_{i=1}^{k+1} i^{3}$:

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =\sum_{i=1}^{k} i^{3}+(k+1)^{3} \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
& =\frac{k^{2}}{4}(k+1)^{2}+(k+1)(k+1)^{2} \\
& =\frac{k^{2}+4 k+4}{4}(k+1)^{2} \\
& =\frac{(k+2)^{2}}{4}(k+1)^{2} \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2}
\end{aligned}
$$

And:

$$
R H S(k+1)=\left(\frac{(k+1)(k+2)}{2}\right)^{2}
$$

Therefore $\operatorname{LHS}(k+1)=\operatorname{RHS}(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 2

Show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$. We define LHS $(n)=$ $\sum_{i=1}^{n} i(i+1)(i+2)$ and RHS $(n)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
& \operatorname{LHS}(1)=1 *(1+1) *(1+2)=6 \\
& \operatorname{RHS}(1)=\frac{1 *(1+1) *(1+2) *(1+3)}{4}=6
\end{aligned}
$$

- Inductive step: Let k be a positive integer $(k \leq 0)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

Let us compute $L H S(k+1)$:

$$
\begin{aligned}
\operatorname{LHS}(k+1) & ==\sum_{i=1}^{k+1} i(i+1)(i+2) \\
& =L H S(k)+(k+1)(k+2)(k+3) \\
& =\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3) \\
& =\frac{k(k+1)(k+2)(k+3)}{4}+\frac{4(k+1)(k+2)(k+3)}{4} \\
& =\frac{(k+1)(k+2)(k+3)(k+4)}{4}
\end{aligned}
$$

Let us compute $R H S(k+1)$:

$$
R H S(k+1)=\frac{(k+1)(k+2)(k+3)(k+4)}{4}
$$

Therefore $\operatorname{LHS}(k+1)=\operatorname{RHS}(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 3

Show that $\forall n \in \mathbb{N}, n>1, \sum_{i=1}^{n} \frac{1}{i^{2}}<2-\frac{1}{n}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} \frac{1}{i^{2}}<2-\frac{1}{n}$. Let us define $L H S(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}$ and $R H S(n)=$ $2-\frac{1}{n}$. We want to show that $P(n)$ is true for all $n>1$.

- Basis step: We show that $P(2)$ is true:

$$
\begin{aligned}
& \operatorname{LHS}(2)=1+\frac{1}{4}=\frac{5}{4} \\
& \operatorname{RHS}(2)=2-\frac{1}{2}=\frac{6}{4}
\end{aligned}
$$

Therefore $\operatorname{LHS}(2)<\operatorname{RHS}(2)$ and $P(2)$ is true.

- Inductive step: Let k be a positive integer greater than $1(k>1)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
L H S(k+1)=L H S(k)+\frac{1}{(k+1)^{2}}
$$

Since $P(k)$ is true, we find:

$$
L H S(k+1)<2-\frac{1}{k}+\frac{1}{(k+1)^{2}}
$$

Since $k+1>k, \frac{1}{(k+1)^{2}}<\frac{1}{k(k+1)}$.
Therefore

$$
L H S(k+1)<2-\frac{1}{k}+\frac{1}{k(k+1)}
$$

We can use the property $: \frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$:

$$
\begin{aligned}
\operatorname{LHS}(k+1) & <2-\frac{1}{k}+\frac{1}{k}-\frac{1}{k+1} \\
\operatorname{LHS}(k+1) & <2-\frac{1}{k+1}
\end{aligned}
$$

Since $R H S(k+1)=2-\frac{1}{k+1}$, we get $L H S(k+1)<R H S(k+1)$ which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>1$.

Exercise 4

Show that $\forall n \in \mathbb{N}, n>3, n^{2}-7 n+12 \geq 0$.

Let $P(n)$ be the proposition: $n^{2}-7 n+12 \geq 0$. We want to show that $P(n)$ is true for n greater than 3. Let us define $\operatorname{LHS}(n)=n^{2}-7 n+12$.
Notice that $L H S(1)=6, L H S(2)=2$ and $L H S(3)=0$ hence $P(1), P(2)$ and $P(3)$ are true.

- Basis step: $P(4)$ is true:

$$
L H S(4)=4^{2}-7 * 4+12=0
$$

Therefore $\operatorname{LHS}(4) \geq 0$ and $P(4)$ is true.

- Inductive step: Let k be a positive integer greater than $3(k>3)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =(k+1)^{2}-7(k+1)+12 \\
& =k^{2}+2 k+1-7 k-7+12 \\
& =\left(k^{2}-7 k+12\right)+(2 k-6)
\end{aligned}
$$

Since $P(k)$ is true, we know that $k^{2}-7 k+12 \geq 0$. Since $k \geq 4,2 k-6>0$. Therefore, $(k+1)^{2}-7(k+1)+12>0$.
This validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>3$.

Exercise 5

Show that $\forall n \in \mathbb{N}, n>1$, a set S_{n} with n elements has $\frac{n(n-1)}{2}$ subsets that contain exactly two elements.

Let $P(n)$ be the proposition: A set S_{n} with n elements has $\frac{n(n-1)}{2}$ subsets that contain exactly two elements.
We want to show that $P(n)$ is true for all $n \geq 2$; we use a proof by induction.

- Basis step: $P(2)$ is true: As the set S_{2} contains 2 elements, there is only one subset that containing exactly two elements, and $n(n-1) / 2=1$.
- Inductive step: Let k be a positive integer greater or equal to $2(k \geq 2)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Let us consider a set S_{k+1} of $k+1$ elements: $S_{k+1}=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right\}$. Let S_{k} be the set with the first k elements of $S_{k+1}: S_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$. Since $P(k)$ is true, there are $k(k-1) / 2$ subsets of S_{k} that contain exactly two elements.
The $(k+1)$ th element of $S_{k+1} a_{k+1}$ can pair with each of the elements of S_{k} to build a subset of S_{k+1} of exactly two elements. These new subsets do not duplicate with any of the $k(k-1) / 2$ subsets of S_{k} because the $(k+1)$ th element does not appear in any of these subsets. There are no other two-element subsets.
Therefore, the total number of two-element subsets of S_{k+1} is: $k(k-1) / 2+k=(k(k-1)+$ $2 k) / 2=k(k+1) / 2=(k+1)((k+1)-1) / 2$. This validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 2$.

Exercise 6

Find the flaw with the following proof that : $P(n): a^{n}=1$ for all non negative integer n, whenever a is a non zero real number:

- Basis step: $P(0)$ is true: $a^{0}=1$ is true, by definition of a^{0}
- Strong Inductive step: assume that $a^{j}=1$ for all non negative integers j with $j \leq k$. Then note that:

$$
a^{k+1}=\frac{a^{k} a^{k}}{a^{k-1}}=\frac{1 \times 1}{1}=1
$$

Therefore $P(k+1)$ is true.
The principle of proof by strong mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 0$.

This is again a case in which if we are not careful, we can prove nearly every thing! In the proof given:

- the basis step is correct: by definition we indeed have $a^{0}=1$.
- Inductive step: the assumption should really be written: assume that $a^{j}=1$, for all integers j with $0 \leq j \leq k$. When we write $a^{k+1}=\frac{a^{k} a^{k}}{a^{k-1}}$, we need to use the premise for $j=k$ and $j=k-1$. But for $k=0, k-1<0$, and we are outside the limit of validity. This means that we can show $P(k) \rightarrow P(k+1)$ only for $k>0$. This is not enough to apply the method of proof by induction!

Exercise 7

Show that $\forall n \in \mathbb{N}$, 21 divides $4^{n+1}+5^{2 n-1}$.
Let $P(n)$ be the proposition: 21 divides $4^{n+1}+5^{2 n-1}$. We want to show that $P(n)$ is true for all n; we use a proof by induction.

- Basis step: $P(1)$ is true: when $n=1,4^{n+1}+5^{2 n-1}=16+5=21$ is divisible by 21 .
- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
\begin{aligned}
4^{(k+1)+1}+5^{2(k+1)-1} & =4 * 4^{k+1}+5^{2} * 5^{2 k-1} \\
& =4 * 4^{k+1}+25 * 5^{2 k-1} \\
& =4\left(4^{k+1}+5^{2 k-1}\right)+21 * 5^{2 k-1}
\end{aligned}
$$

Because $4^{k+1}+5^{2 k-1}$ and $21 * 5^{2 k-1}$ both are divisible by $21,4^{(k+1)+1}+5^{2(k+1)-1}$ is also divisible by 21: $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 0$.

Exercise 8

Show that $\forall n \in \mathbb{N} f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ where f_{n} are the Fibonacci numbers.
Let $P(n)$ be the proposition: $f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$
where f_{n} are the Fibonacci numbers. Let us define $\operatorname{LHS}(n)=f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}$ and $R H S(n)=$ $f_{n} f_{n+1}$.

We want to show that $P(n)$ is true for all n; we use a proof by induction.

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
\operatorname{LHS}(2) & =f_{1}^{2}=1^{2}=1 \\
\operatorname{RHS}(2) & =f_{1} f_{2}=1 .
\end{aligned}
$$

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{1}^{2}+f_{2}^{2}+\ldots+f_{k}^{2}+f_{k+1}^{2} \\
& =f_{k} f_{k+1}+f_{k+1}^{2} \\
& =f_{k+1}\left(f_{k}+f_{k+1}\right) \\
& =f_{k+1} f_{k+2}
\end{aligned}
$$

and

$$
R H S(k+1)=f_{k+1} f_{k+2}
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 9

Show that $\forall n \in \mathbb{N} f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$ where f_{n} are the Fibonacci numbers.
Let $P(n)$ be the proposition: $f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$
where f_{n} are the Fibonacci numbers. Let us define $\operatorname{LHS}(n)=f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}$ and $R H S(n)=f_{2 n-1}-1$.

We want to show that $P(n)$ is true for all $n>0$; we use a proof by induction.

- Basis step:

$$
\begin{array}{r}
\operatorname{LHS}(1)=f_{0}-f_{1}+f_{2}=0-1+1=0 \\
\operatorname{RHS}(1)=f_{1}-1=1-1=0
\end{array}
$$

Therefore $\operatorname{LHS}(1)=R H S(1)$ and $P(1)$ is true.

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{0}-f_{1}+\ldots-f_{2 k-1}+f_{2 k}-f_{2 k+1}+f_{2 k+2} \\
& =f_{2 k-1}-1-f_{2 k+1}+f_{2 k+2} \\
& =f_{2 k-1}-1-f_{2 k+1}+\left(f_{2 k}+f_{2 k+1}\right) \\
& =f_{2 k-1}+f_{2 k}-1 \\
& =f_{2 k+1}-1
\end{aligned}
$$

and

$$
R H S(k+1)=f_{2 k+1}-1
$$

Therefore $\operatorname{LHS}(k+1)=\operatorname{RHS}(k+1)$, which validates that $P(k+1)$ is true.
The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Extra Credit

Show that $\forall n \in \mathbb{N}, n>1$, a set S_{n} with n elements has $\frac{n(n-1)(n-2)}{6}$ subsets that contain exactly three elements.

Let $P(n)$ be the proposition: A set S_{n} with n elements has $\frac{n(n-1)(n-2)}{6}$ subsets that contain exactly three elements.
We want to show that $P(n)$ is true for all $n \geq 3$; we use a proof by induction.

- Basis step: $P(3)$ is true: In a set S_{3} of 3 elements, there is only one subset that containing exactly three elements, and $(3(3-1)(3-2)) / 6=1$.
- Inductive step: Let k be a positive integer greater or equal to $3(k \geq 3)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Let $S_{k+1}=\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}$ be a set of $k+1$ elements, and let S_{k} be its subset $S_{k}=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.
S_{k} contains k elements: since $P(k)$ is true, it contains $k(k-1)(k-2) / 6$ three-element subsets. In addition, based on exercise 7, it also contains $k(k-1) / 2$ two-element subsets.
The subsets of S_{k+1} that contain 3 elements are the subsets of 3 elements of S_{k}, plus the subsets of 3 elements containing a_{k+1}.
a_{k+1} can pair with each of the two-element subsets of S_{k} in order to form a subset of exact three elements of S_{k+1}. These new subsets do not duplicate with any of the other threeelement subsets because $a_{(} k+1$) does not appear in any of these subsets. There are no other three-element subsets.
Therefore, the total number N_{3} of three-element subsets of S_{k+1} is:

$$
\begin{aligned}
N_{3} & =\frac{k(k-1)(k-2)}{6}+\frac{k(k-1)}{2} \\
& =\frac{k(k-1)[(k-2)+3]}{6} \\
& =\frac{(k+1) k(k-1)}{6} \\
& =\frac{(k+1)((k+1)-1)((k+1)-2)}{6}
\end{aligned}
$$

This validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 2$.

