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Exercise 1

Show that ∀n ∈ N,
n∑

i=1

i3 =

(
n(n + 1)

2

)2

.

Let P (n) be the proposition:
n∑

i=1

i3 =

(
n(n + 1)

2

)2

. Let us also define LHS(n) =
n∑

i=1

i3 and

RHS(n) =

(
n(n + 1)

2

)2

• Basis step: P (1) is true:

LHS(1) =

1∑
i=1

i3 = 1

RHS(1) =

(
1(1 + 1)

2

)2

=

(
2

2

)2

= 1

• Inductive step: Let k be a positive integer (k ≤ 0), and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.

Let us compute LHS(k + 1) =

k+1∑
i=1

i3:
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LHS(k + 1) =
k∑

i=1

i3 + (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3

=
k2

4
(k + 1)2 + (k + 1)(k + 1)2

=
k2 + 4k + 4

4
(k + 1)2

=
(k + 2)2

4
(k + 1)2

=

(
(k + 1)(k + 2)

2

)2

And:

RHS(k + 1) =

(
(k + 1)(k + 2)

2

)2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise 2

Show that ∀n ∈ N,
n∑

i=1

i(i + 1)(i + 2) =
n(n + 1)(n + 2)(n + 3)

4
.

Let P (n) be the proposition:
n∑

i=1

i(i+1)(i+2) =
n(n + 1)(n + 2)(n + 3)

4
. We define LHS(n) =

n∑
i=1

i(i + 1)(i + 2) and RHS(n) =
n(n + 1)(n + 2)(n + 3)

4

• Basis step: P (1) is true:

LHS(1) = 1 ∗ (1 + 1) ∗ (1 + 2) = 6

RHS(1) =
1 ∗ (1 + 1) ∗ (1 + 2) ∗ (1 + 3)

4
= 6

• Inductive step: Let k be a positive integer (k ≤ 0), and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.

2



Let us compute LHS(k + 1):

LHS(k + 1) = =
k+1∑
i=1

i(i + 1)(i + 2)

= LHS(k) + (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+ (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+

4(k + 1)(k + 2)(k + 3)

4

=
(k + 1)(k + 2)(k + 3)(k + 4)

4

Let us compute RHS(k + 1):

RHS(k + 1) =
(k + 1)(k + 2)(k + 3)(k + 4)

4

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n.

Exercise 3

Show that ∀n ∈ N, n > 1,
n∑

i=1

1

i2
< 2− 1

n
.

Let P (n) be the proposition:
n∑

i=1

1

i2
< 2 − 1

n
. Let us define LHS(n) =

n∑
i=1

1

i2
and RHS(n) =

2− 1

n
. We want to show that P (n) is true for all n > 1.

• Basis step: We show that P (2) is true:

LHS(2) = 1 +
1

4
=

5

4

RHS(2) = 2− 1

2
=

6

4

Therefore LHS(2) < RHS(2) and P (2) is true.

• Inductive step: Let k be a positive integer greater than 1 (k > 1), and let us suppose that
P (k) is true. We want to show that P (k + 1) is true.

LHS(k + 1) = LHS(k) +
1

(k + 1)2

3



Since P(k) is true, we find:

LHS(k + 1) < 2− 1

k
+

1

(k + 1)2

Since k + 1 > k,
1

(k + 1)2
<

1

k(k + 1)
.

Therefore

LHS(k + 1) < 2− 1

k
+

1

k(k + 1)

We can use the property :
1

k(k + 1)
=

1

k
− 1

k + 1
:

LHS(k + 1) < 2− 1

k
+

1

k
− 1

k + 1

LHS(k + 1) < 2− 1

k + 1

Since RHS(k + 1) = 2 − 1

k + 1
, we get LHS(k + 1) < RHS(k + 1) which validates that

P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 1.

Exercise 4

Show that ∀n ∈ N, n > 3, n2 − 7n + 12 ≥ 0.

Let P (n) be the proposition: n2−7n+12 ≥ 0. We want to show that P (n) is true for n greater
than 3. Let us define LHS(n) = n2 − 7n + 12.
Notice that LHS(1) = 6, LHS(2) = 2 and LHS(3) = 0 hence P (1), P (2) and P (3) are true.

• Basis step: P (4) is true:

LHS(4) = 42 − 7 ∗ 4 + 12 = 0

Therefore LHS(4) ≥ 0 and P (4) is true.

• Inductive step: Let k be a positive integer greater than 3 (k > 3), and let us suppose that
P (k) is true. We want to show that P (k + 1) is true.

LHS(k + 1) = (k + 1)2 − 7(k + 1) + 12

= k2 + 2k + 1− 7k − 7 + 12

= (k2 − 7k + 12) + (2k − 6)

Since P (k) is true, we know that k2 − 7k + 12 ≥ 0. Since k ≥ 4, 2k − 6 > 0. Therefore,
(k + 1)2 − 7(k + 1) + 12 > 0.
This validates that P (k + 1) is true.
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The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 3.

Exercise 5

Show that ∀n ∈ N, n > 1, a set Sn with n elements has
n(n− 1)

2
subsets that contain exactly two

elements.

Let P (n) be the proposition: A set Sn with n elements has
n(n− 1)

2
subsets that contain

exactly two elements.
We want to show that P (n) is true for all n ≥ 2; we use a proof by induction.

• Basis step: P (2) is true: As the set S2 contains 2 elements, there is only one subset that
containing exactly two elements, and n(n− 1)/2 = 1.

• Inductive step: Let k be a positive integer greater or equal to 2 (k ≥ 2), and let us suppose
that P (k) is true. We want to show that P (k + 1) is true.
Let us consider a set Sk+1 of k + 1 elements: Sk+1 = {a1, a2, . . . , ak, ak+1}. Let Sk be the set
with the first k elements of Sk+1: Sk = {a1, . . . , ak}. Since P (k) is true, there are k(k− 1)/2
subsets of Sk that contain exactly two elements.
The (k+ 1)th element of Sk+1 ak+1 can pair with each of the elements of Sk to build a subset
of Sk+1 of exactly two elements. These new subsets do not duplicate with any of the k(k−1)/2
subsets of Sk because the (k + 1)th element does not appear in any of these subsets. There
are no other two-element subsets.
Therefore, the total number of two-element subsets of Sk+1 is: k(k − 1)/2 + k = (k(k − 1) +
2k)/2 = k(k + 1)/2 = (k + 1)((k + 1)− 1)/2. This validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 2.

Exercise 6

Find the flaw with the following proof that : P (n) : an = 1 for all non negative integer n, whenever
a is a non zero real number:

• Basis step: P (0) is true: a0 = 1 is true, by definition of a0

• Strong Inductive step: assume that aj = 1 for all non negative integers j with j ≤ k. Then
note that:

ak+1 =
akak

ak−1
=

1× 1

1
= 1

Therefore P (k + 1) is true.

The principle of proof by strong mathematical induction allows us to conclude that P (n) is true
for all n ≥ 0.
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This is again a case in which if we are not careful, we can prove nearly every thing! In the proof
given:

• the basis step is correct: by definition we indeed have a0 = 1.

• Inductive step: the assumption should really be written:
assume that aj = 1, for all integers j with 0 ≤ j ≤ k. When we write ak+1 = akak

ak−1 , we need
to use the premise for j = k and j = k − 1. But for k = 0, k − 1 < 0, and we are outside the
limit of validity. This means that we can show P (k)→ P (k + 1) only for k > 0. This is not
enough to apply the method of proof by induction!

Exercise 7

Show that ∀n ∈ N, 21 divides 4n+1 + 52n−1.

Let P (n) be the proposition: 21 divides 4n+1 + 52n−1. We want to show that P (n) is true for
all n; we use a proof by induction.

• Basis step: P (1) is true: when n = 1, 4n+1 + 52n−1 = 16 + 5 = 21 is divisible by 21.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.

4(k+1)+1 + 52(k+1)−1 = 4 ∗ 4k+1 + 52 ∗ 52k−1

= 4 ∗ 4k+1 + 25 ∗ 52k−1

= 4(4k+1 + 52k−1) + 21 ∗ 52k−1

Because 4k+1 + 52k−1 and 21 ∗ 52k−1 both are divisible by 21, 4(k+1)+1 + 52(k+1)−1 is also
divisible by 21: P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 0.

Exercise 8

Show that ∀n ∈ Nf2
1 + f2

2 + . . . + f2
n = fnfn+1 where fn are the Fibonacci numbers.

Let P (n) be the proposition: f2
1 + f2

2 + . . . + f2
n = fnfn+1

where fn are the Fibonacci numbers. Let us define LHS(n) = f2
1 + f2

2 + . . . + f2
n and RHS(n) =

fnfn+1.
We want to show that P (n) is true for all n; we use a proof by induction.

• Basis step: P (1) is true:

LHS(2) = f2
1 = 12 = 1

RHS(2) = f1f2 = 1.
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• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.
Then

LHS(k + 1) = f2
1 + f2

2 + ... + f2
k + f2

k+1

= fkfk+1 + f2
k+1

= fk+1(fk + fk+1)

= fk+1fk+2

and

RHS(k + 1) = fk+1fk+2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise 9

Show that ∀n ∈ Nf0− f1 + f2− . . .− f2n−1 + f2n = f2n−1− 1 where fn are the Fibonacci numbers.

Let P (n) be the proposition: f0 − f1 + f2 − . . .− f2n−1 + f2n = f2n−1 − 1
where fn are the Fibonacci numbers. Let us define LHS(n) = f0 − f1 + f2 − . . .− f2n−1 + f2n and
RHS(n) = f2n−1 − 1.

We want to show that P (n) is true for all n > 0; we use a proof by induction.

• Basis step:

LHS(1) = f0 − f1 + f2 = 0− 1 + 1 = 0

RHS(1) = f1 − 1 = 1− 1 = 0

Therefore LHS(1) = RHS(1) and P (1) is true.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.
Then

LHS(k + 1) = f0 − f1 + ...− f2k−1 + f2k − f2k+1 + f2k+2

= f2k−1 − 1− f2k+1 + f2k+2

= f2k−1 − 1− f2k+1 + (f2k + f2k+1)

= f2k−1 + f2k − 1

= f2k+1 − 1

and

RHS(k + 1) = f2k+1 − 1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.
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Extra Credit

Show that ∀n ∈ N, n > 1, a set Sn with n elements has
n(n− 1)(n− 2)

6
subsets that contain exactly

three elements.

Let P (n) be the proposition: A set Sn with n elements has
n(n− 1)(n− 2)

6
subsets that contain

exactly three elements.
We want to show that P (n) is true for all n ≥ 3; we use a proof by induction.

• Basis step: P (3) is true: In a set S3 of 3 elements, there is only one subset that containing
exactly three elements, and (3(3− 1)(3− 2))/6 = 1.

• Inductive step: Let k be a positive integer greater or equal to 3 (k ≥ 3), and let us suppose
that P (k) is true. We want to show that P (k + 1) is true.
Let Sk+1 = {a1, a2, . . . , ak+1} be a set of k + 1 elements, and let Sk be its subset Sk =
{a1, a2, . . . , ak}.
Sk contains k elements: since P (k) is true, it contains k(k−1)(k−2)/6 three-element subsets.
In addition, based on exercise 7, it also contains k(k − 1)/2 two-element subsets.
The subsets of Sk+1 that contain 3 elements are the subsets of 3 elements of Sk, plus the
subsets of 3 elements containing ak+1.
ak+1 can pair with each of the two-element subsets of Sk in order to form a subset of exact
three elements of Sk+1. These new subsets do not duplicate with any of the other three-
element subsets because a(k + 1) does not appear in any of these subsets. There are no other
three-element subsets.
Therefore, the total number N3 of three-element subsets of Sk+1 is:

N3 =
k(k − 1)(k − 2)

6
+

k(k − 1)

2

=
k(k − 1)[(k − 2) + 3]

6

=
(k + 1)k(k − 1)

6

=
(k + 1)((k + 1)− 1)((k + 1)− 2)

6

This validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 2.
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