Homework 3: due 1/29/2019

ECS 20 (Winter 2019)

Patrice Koehl koehl@cs.ucdavis.edu

Exercise 1 (5 points)

Let a, b, and c be three propositions. Show that this implication is a tautology, using a truth table:

$$(a \lor b) \land (\neg a \lor c) \to (b \lor c)$$

Exercise 2 (5 points)

Let p, q, and r be three propositions. Show that $(p \lor q) \to r$ and $(p \to r) \lor (q \to r)$ are not logically equivalent.

Exercise 3 (5 points each; total 20 points)

Determine the truth values of the following statements; justify your answers:

- a) $\forall n \in \mathbb{N}, n < (n+2)$
- b) $\exists n \in \mathbb{N}, 4n = 7n$
- c) $\forall n \in \mathbb{Z}, 2n \leq 3n$
- d) $\exists x \in \mathbb{R}, x^3 < x^2$

Exercise 4 (5 points each; total 25 points)

Solve the following proof problems.

- a) Let x be a real number. Prove that if x^2 is irrational, then x is irrational.
- b) Let x be a positive real number. Prove that if x is irrational, then \sqrt{x} is irrational.
- c) Prove or disprove that if a and b are two rational numbers, then a^{b} is also a rational number.
- d) let n be a natural number. Show that n is even if and only if 5n + 12 is even.
- e) Prove that either $4 \times 10^{769} + 22$ or $4 \times 10^{769} + 23$ is not a perfect square. Is your prove constructive, or non-constructive?

Note: for question e), a natural number n is a perfect square if there exists a natural number q such that $n = q^2$. For example, 4, 9, 16, 25, are all perfect squares while 2, 3, 5, 6,.... are not.

Exercise 5 (10 points)

Let n be a natural number and let a_1, a_2, \ldots, a_n be a set of n real numbers. Prove that at least one of these numbers is less than, or equal to the average of these numbers. What kind of proof did you use?

Exercise 6 (5 points each; total 10 points)

Let n be an integer. Show that if $n^3 + 9$ is even, then n is odd, using:

- a) a proof by contraposition
- b) a proof by contradiction

Extra Credit (5 points)

Use Exercise 5 to show that if the first 12 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum smaller than or equal to 19.

(+ 2 points for submitting online)