Homework 3: due 1/29/2019

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu

Exercise 1 (5 points)

Let a, b, and c be three propositions. Show that this implication is a tautology, using a truth table:

$$
(a \vee b) \wedge(\neg a \vee c) \rightarrow(b \vee c)
$$

Exercise 2 (5 points)

Let p, q, and r be three propositions. Show that $(p \vee q) \rightarrow r$ and $(p \rightarrow r) \vee(q \rightarrow r)$ are not logically equivalent.

Exercise 3 (5 points each; total 20 points)

Determine the truth values of the following statements; justify your answers:
a) $\forall n \in \mathbb{N}, n<(n+2)$
b) $\exists n \in \mathbb{N}, 4 n=7 n$
c) $\forall n \in \mathbb{Z}, 2 n \leq 3 n$
d) $\exists x \in \mathbb{R}, x^{3}<x^{2}$

Exercise 4 (5 points each; total 25 points)

Solve the following proof problems.
a) Let x be a real number. Prove that if x^{2} is irrational, then x is irrational.
b) Let x be a positive real number. Prove that if x is irrational, then \sqrt{x} is irrational.
c) Prove or disprove that if a and b are two rational numbers, then a^{b} is also a rational number.
d) let n be a natural number. Show that n is even if and only if $5 n+12$ is even.
e) Prove that either $4 \times 10^{769}+22$ or $4 \times 10^{769}+23$ is not a perfect square. Is your prove constructive, or non-constructive?

Note: for question e), a natural number n is a perfect square if there exists a natural number q such that $n=q^{2}$. For example, $4,9,16,25, \ldots$ are all perfect squares while $2,3,5,6, \ldots$ are not.

Exercise 5 (10 points)

Let n be a natural number and let $a_{1}, a_{2}, \ldots, a_{n}$ be a set of n real numbers. Prove that at least one of these numbers is less than, or equal to the average of these numbers. What kind of proof did you use?

Exercise 6 (5 points each; total 10 points)

Let n be an integer. Show that if $n^{3}+9$ is even, then n is odd, using:
a) a proof by contraposition
b) a proof by contradiction

Extra Credit (5 points)

Use Exercise 5 to show that if the first 12 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum smaller than or equal to 19 .
(+2 points for submitting online)

