Homework 3: Solutions

ECS 20 (Winter 2019)

Patrice Koehl koehl@cs.ucdavis.edu

January 20, 2019

Exercise 1 (5 points)

Let a, b, and c be three propositions. Show that this implication is a tautology, using a truth table:

$$(a \lor b) \land (\neg a \lor c) \rightarrow (b \lor c)$$

Let $A = (a \lor b) \land (\neg a \lor c) \rightarrow (b \lor c)$. The truth table for the values of A is:

a	b	c	$a \vee b$	$\neg a \vee c$	$(a \lor b) \land (\neg a \lor c)$	$b \lor c$	A
\overline{T}	Т	Τ	Т	Т	Τ	Т	\overline{T}
\mathbf{T}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${\rm T}$
${\rm T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${\rm T}$
${\rm T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${\rm T}$
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${\rm T}$
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${\rm T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${\rm T}$
\mathbf{F}	F	F	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$

A is always true, independent of the values of a, b, and c: it is a tautology.

Exercise 2 (5 points)

Let p, q, and r be three propositions. Show that $(p \lor q) \to r$ and $(p \to r) \lor (q \to r)$ are not logically equivalent.

Let $A=(p\vee q)\to r$ and $B=(p\to r)\vee (q\to r).$ Let us compare the truth values of A and B.

							_
p	q	r	$p \lor q$	A	$p \rightarrow r$	$p \rightarrow r$	B
Т	Т	Т	Т	Т	Τ	Τ	Τ
\mathbf{T}	\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{T}
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{T}				
\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${\rm T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	F	F	\mathbf{F}	T	${ m T}$	${ m T}$	${ m T}$

A and B do not always share the same truth values: they are not logically equivalent.

Exercise 3 (5 points each; total 20 points)

Determine the truth values of the following statements; justify your answers:

a) $\forall n \in \mathbb{N}, n < (n+2)$

The statement is True. Let us prove it.

Let n be a natural number. Let us define A = n and B = n + 2. We notice that A - B = n - (n + 2) = -2 < 0. Therefore, A < B, i.e. n < (n + 2). As this is true for all n, the statement is true.

b) $\exists n \in \mathbb{N}, 2n = 3n$

The statement is False. Let us prove it.

Let us solve first 2n = 3n where n is an integer. We find 2n - 3n = 0, i.e. n = 0. Therefore, the equation 2n = 3n is only true for n = 0. However, 0 does not belong to \mathbb{N} . We can conclude that $\forall n \in \mathbb{N}, 2n \neq 3n$; the property is false.

c) $\forall n \in \mathbb{Z}, 3n < 4n$

The statement is False. Let us prove it.

Let n be an integer. $3n \le 4n$ is equivalent to $0 \le n$. This means that $\forall n < 0, 3n > 4n$. Therefore, we can find $n \in \mathbb{Z}$ such that 3n > 4n (for example n = -1). The statement is false.

d) $\exists x \in \mathbb{R}, x^3 < x^2$

The statement is True. Let us prove it.

Notice that the statement is based on existence: we only need to find one example. if x = -1. $x^2 = 1$ and $x^3 = -1$, in which case $x^3 < x^2$.

Exercise 4 (5 points each; total 25 points)

Show that the following statements are true.

a) Let x be a real number. Prove that if x^2 is irrational, then x is irrational.

Proof: Let x be a real number. We define the two statements: $P(x): x^2$ is irrational, and Q(x): x is irrational. We want to show $P(x) \to Q(x)$. We will prove instead its contrapositive: $\neg Q(x) \to \neg P(x)$, where $\neg Q(x): x$ is rational, and $\neg P(x): x^2$ is rational.

Hypothesis: $\neg Q(x)$ is true, namely x is rational. By definition, there exists two integers a and b, with $b \neq 0$, such that $x = \frac{a}{b}$. Then,

$$x^2 = \frac{a^2}{b^2}$$

Since a is an integer, a^2 is an integer. Similarly, since b is a non-zero integer, b^2 is a non zero integer. Therefore x^2 is rational, which concludes the proof.

b) Let x be a positive real number. Prove that if x is irrational, then \sqrt{x} is irrational.

Proof: Let x be a real number. We define the two statements: P(x): x is irrational, and $Q(x): \sqrt{x}$ is irrational. We want to show $P(x) \to Q(x)$. We will prove instead its contrapositive: $\neg Q(x) \to \neg P(x)$, where $\neg Q(x): \sqrt{x}$ is rational, and $\neg P(x): x$ is rational.

Hypothesis: $\neg Q(x)$ is true, namely \sqrt{x} is rational. By definition, there exists two integers a and b, with $b \neq 0$, such that $\sqrt{x} = \frac{a}{b}$. Then,

$$x = \frac{a^2}{b^2}$$

Since a is an integer, a^2 is an integer. Similarly, since b is a non-zero integer, b^2 is a non zero integer. Therefore x is rational, which concludes the proof.

c) Prove or disprove that if a and b are two rational numbers, then a^b is also a rational number.

The property is in fact not true. Let a=2 and $b=\frac{1}{2}$. Then $a^b=2^{\frac{1}{2}}=\sqrt{2}$; but we have shown in class that $\sqrt{2}$ is irrational.

d) let n be a natural number. Show that n is even if and only if 5n + 12 is even.

Proof. Let n be a natural number and let P(n) and Q(n) be the propositions n is even, and 5n + 12 is even, respectively. We will show that $P(n) \to Q(n)$ and $Q(n) \to P(n)$.

i)
$$P(n) \to Q(n)$$

Hypothesis: n is even. By definition of even numbers, there exists and integer k such that n = 2k. Then,

$$5n + 12 = 10k + 12 = 2(5k + 6)$$

Since 5k + 6 is an integer, 5n + 12 can be written in the form 2k', where k' is an integer; therefore, 5n + 12 is even.

ii) $Q(n) \to P(n)$

We will show instead its contrapositive, namely $\neg P(n) \rightarrow \neg Q(n)$, where $\neg P(n) : n$ is odd, and $\neg Q(n) : 5n + 12$ is odd.

Hypothesis: n is odd. By definition of even numbers, there exists and integer k such that n = 2k + 1. Then,

$$5n + 12 = 10k + 5 + 12 = 2(5k + 8) + 1$$

3

Since 5k + 8 is an integer, 5n + 12 can be written in the form 2k' + 1, where k' is an integer; therefore, 5n + 12 is odd.

e) Prove that either $4\times10^{769}+22$ or $4\times10^{769}+23$ is not a perfect square. Is your prove constructive, or non-constructive?

Let $n = 4 \times 10^{769} + 22$. The two numbers are n and n + 1.

Proof by contradiction: Let us suppose that both n and n+1 are perfect squares:

$$\exists k \in \mathbb{Z}, k^2 = n$$
$$\exists l \in \mathbb{Z}, l^2 = n + 1$$

Then

$$l^2 = k^2 + 1$$
$$(l-k)(l+k) = 1$$

Since l and k are integers, there are only two cases:

- -l-k=1 and l+k=1, i.e. l=1 and k=0. Then we would have $k^2=0$, i.e. n=0: contradiction
- -l-k=-1 and l+k=-1, i.e. l=-1 and k=0. Again, contradiction.

We can conclude that the proposition is true.

Exercise 5 (10 points)

Let n be a natural number and let a_1, a_2, \ldots, a_n be a set of n real numbers. Prove that at least one of these numbers is less than, or equal to the average of these numbers. What kind of proof did you use?

We use a proof by contradiction.

Suppose none of the real numbers $a_1, a_2, ..., a_n$ is less than or equal to the average of these numbers, denoted by \overline{a} .

By definition

$$\overline{a} = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Our hypothesis is that:

$$a_1 > \overline{a}$$
 $a_2 > \overline{a}$
 $\dots > \dots$
 $a_n > \overline{a}$

We sum up all these equations and get the following:

$$a_1 + a_2 + \dots + a_n > n * \overline{a}$$

Replacing \overline{a} in equation (9) by its value given in equation (4) we get:

$$a_1 + a_2 + \dots + a_n > a_1 + a_2 + \dots + a_n$$

This is not possible: a number cannot be strictly smaller than itself: we have reached a contradiction. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 6 (5 points each; total 10 points)

Let n be an integer. Show that if $n^3 + 9$ is even, the n is odd, using:

- a) a proof by contraposition
- b) a proof by contradiction

Let n be an integer. We define $P(n): n^3 + 9$ is even, and Q(n): n is odd. We want to prove that $P(n) \to Q(n)$. We use two different proofs:

a) Proof by contrapositive

We want to show that $\neg Q(n) \rightarrow \neg P(n)$.

Hypothesis: $\neg Q(n)$, i.e. n is even. By definition of even numbers, there exists and integer k such that n = 2k. Then,

$$n^3 + 9 = 10k^3 + 9 = 2(5k^3 + 4) + 1$$

Since $5k^3 + 4$ is an integer, $n^3 + 9$ can be written in the form 2k' + 1, where k' is an integer; therefore, $n^3 + 9$ is odd, i.e. $\neg P(n)$ is true.

a) Proof by contradiction

We suppose that $P(n) \to Q(n)$ is false, i.e. that $\neg(P(n) \to Q(n))$ is true, i.e. that $P(n) \land \neg Q(n)$ is true. This is only the case if P(n) is true and $\neg Q(n)$ is true.

If $\neg Q(n)$ is true, then n is even. By definition of even numbers, there exists and integer k such that n=2k. Then,

$$n^3 + 9 = 10k^3 + 9 = 2(5k^3 + 4) + 1$$

Since $5k^3 + 4$ is an integer, $n^3 + 9$ can be written in the form 2k' + 1, where k' is an integer; therefore, $n^3 + 9$ is odd, i.e. $\neg P(n)$ is true. However, we have supposed that P(n) is true: we have reached a contradiction. The original statement is therefore true.

Extra Credit (5 points)

Use Exercise 5 to show that if the first 12 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum greater than or equal to 20.

Let $a_1, a_2, ..., a_{12}$ be an arbitrary order of 12 positive integers from 1 to 12 being placed around a circle:

Since the twelve numbers a correspond to the first 12 positive integers, we get:

$$a_1 + a_2 + \dots + a_{12} = 1 + 2 + \dots + 12 = 78$$
 (1)

Notice that the $a_1, a_2, ..., a_{12}$ are not necessarily in the order 1, 2, ..., 12. They do include however the twelve integers from 1 to 12: these is why the sum is 78

Let us now consider the different sums S_i of three consecutive sites around the circle. There are 12 such sums:

$$S_1 = a_1 + a_2 + a_3$$

$$S_2 = a_2 + a_3 + a_4$$

$$S_3 = a_3 + a_4 + a_5$$

$$S_4 = a_4 + a_5 + a_6$$

$$S_5 = a_5 + a_6 + a_7$$

$$S_6 = a_6 + a_7 + a_8$$

$$S_7 = a_7 + a_8 + a_9$$

$$S_8 = a_8 + a_9 + a_{10}$$

$$S_9 = a_9 + a_{10} + a_{11}$$

$$S_{10} = a_{10} + a_{11} + a_{12}$$

$$S_{11} = a_{11} + a_{12} + a_1$$

$$S_{12} = a_{12} + a_1 + a_2$$

We do not know the values of the individual sums S_i ; however, we can compute the sum of these numbers:

$$S_1 + S_2 + \dots + S_{12} = (a_1 + a_2 + a_3) + (a_2 + a_3 + a_4) + \dots + (a_{12} + a_1 + a_2)$$

= $3 * (a_1 + a_2 + \dots + a_{12})$
= $3 * 78$
= 234

The average of $S_1, S_2, ..., S_{12}$ is therefore:

$$\overline{S} = \frac{S_1 + S_2 + \dots + S_{12}}{12}$$

$$= \frac{234}{12}$$

$$= 19.5$$

Based on the conclusion of Exercise 5, at least one of S_1 , S_2 , ..., S_{12} is smaller to or equal to \overline{S} , i.e., 19.5. Because S_1 , S_2 , ..., S_{12} are all integers, they cannot be equal to 19.5. Thus, at least one of S_1 , S_2 , ..., S_{12} is smaller to or equal to 19.