Homework 3: Solutions

ECS 20 (Winter 2019)
Patrice Koehl
koehl@cs.ucdavis.edu
January 20, 2019

Exercise 1 (5 points)

Let a, b, and c be three propositions. Show that this implication is a tautology, using a truth table:

$$
(a \vee b) \wedge(\neg a \vee c) \rightarrow(b \vee c)
$$

Let $A=(a \vee b) \wedge(\neg a \vee c) \rightarrow(b \vee c)$. The truth table for the values of A is:

a	b	c	$a \vee b$	$\neg a \vee c$	$(a \vee b) \wedge(\neg a \vee c)$	$b \vee c$	A
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	T
T	F	T	T	T	T	T	T
T	F	F	T	F	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	T	F	T	F	T	T
F	F	F	F	T	F	F	T

A is always true, independent of the values of a, b, and c : it is a tautology.

Exercise 2 (5 points)

Let p, q, and r be three propositions. Show that $(p \vee q) \rightarrow r$ and $(p \rightarrow r) \vee(q \rightarrow r)$ are not logically equivalent.

Let $A=(p \vee q) \rightarrow r$ and $B=(p \rightarrow r) \vee(q \rightarrow r)$. Let us compare the truth values of A and B.

p	q	r	$p \vee q$	A	$p \rightarrow r$	$p \rightarrow r$	B
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	F	F	T	T
F	T	T	T	T	T	T	T
F	T	F	T	F	T	F	T
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

A and B do not always share the same truth values: they are not logically equivalent.

Exercise 3 (5 points each; total 20 points)

Determine the truth values of the following statements; justify your answers:
a) $\forall n \in \mathbb{N}, n<(n+2)$

The statement is True. Let us prove it.
Let n be a natural number. Let us define $A=n$ and $B=n+2$. We notice that $A-B=$ $n-(n+2)=-2<0$. Therefore, $A<B$, i.e. $n<(n+2)$. As this is true for all n, the statement is true.
b) $\exists n \in \mathbb{N}, 2 n=3 n$

The statement is False. Let us prove it.
Let us solve first $2 n=3 n$ where n is an integer. We find $2 n-3 n=0$, i.e. $n=0$. Therefore, the equation $2 n=3 n$ is only true for $n=0$. However, 0 does not belong to \mathbb{N}. We can conclude that $\forall n \in \mathbb{N}, 2 n \neq 3 n$; the property is false.
c) $\forall n \in \mathbb{Z}, 3 n \leq 4 n$

The statement is False. Let us prove it.
Let n be an integer. $3 n \leq 4 n$ is equivalent to $0 \leq n$. This means that $\forall n<0,3 n>4 n$. Therefore, we can find $n \in \mathbb{Z}$ such that $3 n>4 n$ (for example $n=-1$). The statement is false.
d) $\exists x \in \mathbb{R}, x^{3}<x^{2}$

The statement is True. Let us prove it.
Notice that the statement is based on existence: we only need to find one example. if $x=-1$. $x^{2}=1$ and $x^{3}=-1$, in which case $x^{3}<x^{2}$.

Exercise 4 (5 points each; total 25 points)

Show that the following statements are true.
a) Let x be a real number. Prove that if x^{2} is irrational, then x is irrational.

Proof: Let x be a real number. We define the two statements: $P(x): x^{2}$ is irrational, and $Q(x): x$ is irrational. We want to show $P(x) \rightarrow Q(x)$. We will prove instead its contrapositive: $\neg Q(x) \rightarrow \neg P(x)$, where $\neg Q(x): x$ is rational, and $\neg P(x): x^{2}$ is rational.
Hypothesis: $\neg Q(x)$ is true, namely x is rational. By definition, there exists two integers a and b, with $b \neq 0$, such that $x=\frac{a}{b}$. Then,

$$
x^{2}=\frac{a^{2}}{b^{2}}
$$

Since a is an integer, a^{2} is an integer. Similarly, since b is a non-zero integer, b^{2} is a non zero integer. Therefore x^{2} is rational, which concludes the proof.
b) Let x be a positive real number. Prove that if x is irrational, then \sqrt{x} is irrational.

Proof: Let x be a real number. We define the two statements: $P(x): x$ is irrational, and $Q(x): \sqrt{x}$ is irrational. We want to show $P(x) \rightarrow Q(x)$. We will prove instead its contrapositive: $\neg Q(x) \rightarrow \neg P(x)$, where $\neg Q(x): \sqrt{x}$ is rational, and $\neg P(x): x$ is rational.
Hypothesis: $\neg Q(x)$ is true, namely \sqrt{x} is rational. By definition, there exists two integers a and b, with $b \neq 0$, such that $\sqrt{x}=\frac{a}{b}$. Then,

$$
x=\frac{a^{2}}{b^{2}}
$$

Since a is an integer, a^{2} is an integer. Similarly, since b is a non-zero integer, b^{2} is a non zero integer. Therefore x is rational, which concludes the proof.
c) Prove or disprove that if a and b are two rational numbers, then a^{b} is also a rational number. The property is in fact not true. Let $a=2$ and $b=\frac{1}{2}$. Then $a^{b}=2^{\frac{1}{2}}=\sqrt{2}$; but we have shown in class that $\sqrt{2}$ is irrational.
d) let n be a natural number. Show that n is even if and only if $5 n+12$ is even.

Proof. Let n be a natural number and let $P(n)$ and $Q(n)$ be the propositions n is even, and $5 n+12$ is even, respectively. We will show that $P(n) \rightarrow Q(n)$ and $Q(n) \rightarrow P(n)$.
i) $P(n) \rightarrow Q(n)$

Hypothesis: n is even. By definition of even numbers, there exists and integer k such that $n=2 k$. Then,

$$
5 n+12=10 k+12=2(5 k+6)
$$

Since $5 k+6$ is an integer, $5 n+12$ can be written in the form $2 k^{\prime}$, where k^{\prime} is an integer; therefore, $5 n+12$ is even.
ii) $Q(n) \rightarrow P(n)$

We will show instead its contrapositive, namely $\neg P(n) \rightarrow \neg Q(n)$, where $\neg P(n): n$ is odd, and $\neg Q(n): 5 n+12$ is odd.
Hypothesis: n is odd. By definition of even numbers, there exists and integer k such that $n=2 k+1$. Then,

$$
5 n+12=10 k+5+12=2(5 k+8)+1
$$

Since $5 k+8$ is an integer, $5 n+12$ can be written in the form $2 k^{\prime}+1$, where k^{\prime} is an integer; therefore, $5 n+12$ is odd.
e) Prove that either $4 \times 10^{769}+22$ or $4 \times 10^{769}+23$ is not a perfect square. Is your prove constructive, or non-constructive?
Let $n=4 \times 10^{769}+22$. The two numbers are n and $n+1$.
Proof by contradiction: Let us suppose that both n and $n+1$ are perfect squares:

$$
\begin{aligned}
& \exists k \in \mathbb{Z}, k^{2}=n \\
& \exists l \in \mathbb{Z}, l^{2}=n+1
\end{aligned}
$$

Then

$$
\begin{aligned}
l^{2} & =k^{2}+1 \\
(l-k)(l+k) & =1
\end{aligned}
$$

Since l and k are integers, there are only two cases:
$-l-k=1$ and $l+k=1$, i.e. $l=1$ and $k=0$. Then we would have $k^{2}=0$, i.e. $n=0$: contradiction
$-l-k=-1$ and $l+k=-1$, i.e. $l=-1$ and $k=0$. Again, contradiction.
We can conclude that the proposition is true.

Exercise 5 (10 points)

Let n be a natural number and let $a_{1}, a_{2}, \ldots, a_{n}$ be a set of n real numbers. Prove that at least one of these numbers is less than, or equal to the average of these numbers. What kind of proof did you use?

We use a proof by contradiction.
Suppose none of the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ is less than or equal to the average of these numbers, denoted by \bar{a}.

By definition

$$
\bar{a}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

Our hypothesis is that:

$$
\begin{aligned}
a_{1} & >\bar{a} \\
a_{2} & >\bar{a} \\
\ldots & >\ldots \\
a_{n} & >\bar{a}
\end{aligned}
$$

We sum up all these equations and get the following:

$$
a_{1}+a_{2}+\ldots+a_{n}>n * \bar{a}
$$

Replacing \bar{a} in equation (9) by its value given in equation (4) we get:

$$
a_{1}+a_{2}+\ldots+a_{n}>a_{1}+a_{2}+\ldots+a_{n}
$$

This is not possible: a number cannot be strictly smaller than itself: we have reached a contradiction. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 6 (5 points each; total 10 points)

Let n be an integer. Show that if $n^{3}+9$ is even, the n is odd, using:
a) a proof by contraposition
b) a proof by contradiction

Let n be an integer. We define $P(n): n^{3}+9$ is even, and $Q(n): n$ is odd. We want to prove that $P(n) \rightarrow Q(n)$. We use two different proofs:
a) Proof by contrapositive

We want to show that $\neg Q(n) \rightarrow \neg P(n)$.
Hypothesis: $\neg Q(n)$, i.e. n is even. By definition of even numbers, there exists and integer k such that $n=2 k$. Then,

$$
n^{3}+9=10 k^{3}+9=2\left(5 k^{3}+4\right)+1
$$

Since $5 k^{3}+4$ is an integer, $n^{3}+9$ can be written in the form $2 k^{\prime}+1$, where k^{\prime} is an integer; therefore, $n^{3}+9$ is odd, i.e. $\neg P(n)$ is true.
a) Proof by contradiction

We suppose that $P(n) \rightarrow Q(n)$ is false, i.e. that $\neg(P(n) \rightarrow Q(n))$ is true, i.e. that $P(n) \wedge$ $\neg Q(n)$ is true. This is only the case if $P(n)$ is true and $\neg Q(n)$ is true.
If $\neg Q(n)$ is true, then n is even. By definition of even numbers, there exists and integer k such that $n=2 k$. Then,

$$
n^{3}+9=10 k^{3}+9=2\left(5 k^{3}+4\right)+1
$$

Since $5 k^{3}+4$ is an integer, $n^{3}+9$ can be written in the form $2 k^{\prime}+1$, where k^{\prime} is an integer; therefore, $n^{3}+9$ is odd, i.e. $\neg P(n)$ is true. However, we have supposed that $P(n)$ is true: we have reached a contradiction. The original statement is therefore true.

Extra Credit (5 points)

Use Exercise 5 to show that if the first 12 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum greater than or equal to 20 .

Let $a_{1}, a_{2}, \ldots, a_{12}$ be an arbitrary order of 12 positive integers from 1 to 12 being placed around a circle:

Since the twelve numbers a correspond to the first 12 positive integers, we get:

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{12}=1+2+\ldots+12=78 \tag{1}
\end{equation*}
$$

Notice that the $a_{1}, a_{2}, \ldots, a_{12}$ are not necessarily in the order $1,2, \ldots, 12$. They do include however the twelve integers from 1 to 12 : these is why the sum is 78

Let us now consider the different sums S_{i} of three consecutive sites around the circle. There are 12 such sums:

$$
\begin{array}{r}
S_{1}=a_{1}+a_{2}+a_{3} \\
S_{2}=a_{2}+a_{3}+a_{4} \\
S_{3}=a_{3}+a_{4}+a_{5} \\
S_{4}=a_{4}+a_{5}+a_{6} \\
S_{5}=a_{5}+a_{6}+a_{7} \\
S_{6}=a_{6}+a_{7}+a_{8} \\
S_{7}=a_{7}+a_{8}+a_{9} \\
S_{8}=a_{8}+a_{9}+a_{10} \\
S_{9}=a_{9}+a_{10}+a_{11} \\
S_{10}=a_{10}+a_{11}+a_{12} \\
S_{11}=a_{11}+a_{12}+a_{1} \\
S_{12}=a_{12}+a_{1}+a_{2}
\end{array}
$$

We do not know the values of the individual sums S_{i}; however, we can compute the sum of these numbers:

$$
\begin{aligned}
S_{1}+S_{2}+\ldots+S_{12} & =\left(a_{1}+a_{2}+a_{3}\right)+\left(a_{2}+a_{3}+a_{4}\right)+\ldots+\left(a_{12}+a_{1}+a_{2}\right) \\
& =3 *\left(a_{1}+a_{2}+\ldots+a_{12}\right) \\
& =3 * 78 \\
& =234
\end{aligned}
$$

The average of $S_{1}, S_{2}, \ldots, S_{12}$ is therefore:

$$
\begin{aligned}
\bar{S} & =\frac{S_{1}+S_{2}+\ldots+S_{12}}{12} \\
& =\frac{234}{12} \\
& =19.5
\end{aligned}
$$

Based on the conclusion of Exercise 5, at least one of $S_{1}, S_{2}, \ldots, S_{12}$ is smaller to or equal to \bar{S}, i.e., 19.5. Because $S_{1}, S_{2}, \ldots, S_{12}$ are all integers, they cannot be equal to 19.5. Thus, at least one of $S_{1}, S_{2}, \ldots, S_{12}$ is smaller to or equal to 19 .

