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Exercise 1

Let n be an integer. Give a direct proof, an indirect proof, and a proof by contradiction of the
statement “if n is even, then n + 9 is odd.”

Let n be an integer. Let p be the proposition: ”n is even”, and q be the proposition ”n + 9 is
odd”.

• Direct proof : We show directly p→ q.
Hypothesis: p is true, i.e. n is even.

As n is even, there exists an integer k such that n = 2k, Then, n+ 9 = 2k + 9 = 2(k + 4) + 1.
As k + 4 is an integer, n + 9 is odd, i.e. q is true. We conclude that p→ q.

• Indirect proof : We show that ¬q → ¬p.
Hypothesis: ¬q is true, i.e. n+9 is even. Then there exists an integer k such that n+9 = 2k.
Then n = 2k − 9 = 2(k − 5) + 1, i.e. n is odd since k − 5 is an integer. ¬p is true.

We have shown that ¬q → ¬p; by contrapositive, we conclude p→ q.

• Contradiction:
Hypothesis: We suppose that the proposition p→ q is false, i.e. that p is true and q is false.
Since p is true, n is even, therefore there exists an integer k such that n = 2k, Then, n+ 9 =
2k + 9 = 2(k + 4) + 1. Since k + 4 is an integer, n + 9 is odd; but the hypothesis states n + 9
is even: we reach a contradiction. The hypothesis is wrong, therefore the statement p→ q is
true.

Exercise 2

Let A = {2, 4, 6} and B = {3, 6}. Define P(A
⋂
B), P(B), and P(A

⋃
B), where P(C) indicates

the power set of the set C.
Since A = {2, 4, 6} and B = {3, 6}, we have:

a) A
⋂

B = {6}

b) A
⋃
B = {2, 3, 4, 6}

Therefore,
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a) P(B) = {∅, {3}, {6}, {3, 6}}

b) P(A
⋂
B) = {∅, {6}}

c) P(A
⋃
B) = {∅, {2}, {3}, {4}, {6}, {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 6}, {4, 6}, {2, 3, 4}, {2, 4, 6}, {3, 4, 6},

{2, 3, 4, 6}}

Exercise 3

Let A, and B be two sets in a universe U . Using set identities (no truth table or membership
table!), show the following implications:

There are at least two methods to show set identities. I will use both, namely a ”direct” proof
based on set theory identity and a proof based on logic, using a membership table.

a)
(

(A−B)
⋂
B
)
−B = B

Let us define LHS =
(

(A−B)
⋂
B
)
−B and RHS = B.

– Method 1: set identity

LHS =
(

(A−B)
⋂
B
)
−B((

A
⋂
B
)⋂

B
)⋂

B Property of minus((
A
⋃
B
)⋂

B
)⋂

B DeMorgan’s Law
(B
⋂
B) absorption law

B absorption law
RHS

– Method 2: Membership table

A B B (A−B) (A−B) (A−B
⋂
B) LHS RHS

1 1 0 0 1 1 1 1
1 0 1 1 0 0 0 0
0 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0

Since column 7 and 8 are equal, the two sets are equal

b) B −
(
B −A

)
= B

⋂
A

Let LHS = B −
(
B −A

)
and RHS = B

⋂
A.

– Method 1: set identity

LHS = B −
(
B −A

)
B
⋂(

B
⋂
A
)

property of minus

B
⋂

(B
⋃
A) DeMorgan’s law(

B
⋂
B
)⋃ (

B
⋃
A
)

distributivity

B
⋃
A complement law and identity

RHS
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– Method 2: Membership table

A B B B −A LHS RHS

1 1 0 0 0 0
1 0 1 0 1 1
0 1 0 0 0 0
0 0 1 1 0 0

Since column 5 and 6 are equal, the two sets are equal

c) (A−B)− (A− C) = (A
⋂
C)−B

Let LHS = (A−B)− (A− C) and RHS = (A
⋂
C)−B.

– Method 1: set identity

LHS = (A−B)− (A− C)(
A
⋂

B
)⋂ (

A
⋂
C
)

property of minus(
A
⋂
B
)⋂

(A
⋃
C) deMorgan’s law(

A
⋂
B
⋂
A
)⋃ (

A
⋂
B
⋂

C
)

distributivity

∅
⋃(

A
⋂
C
⋂

B
)

Absorption law
(A
⋂
C)−B property of minus

RHS

– Method 2: Membership table

A B C A−B A− C LHS (A
⋂
C) B RHS

1 1 1 0 0 0 1 1 0
1 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 0 1
1 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Since column 6 and 9 are equal, the two sets are equal
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d) A−B = (A−B)− (B − C)

Let LHS = A−B and RHS = (A− C)− (B − C).

– Method 1: set identity

RHS = (A− C)− (B − C)(
A
⋂

B
)⋂ (

B
⋂
C
)

property of minus(
A
⋂

B
)⋂ (

B
⋃
C
)

deMorgan’s law((
A
⋂

B
)⋂

B
)⋃ ((

A
⋂

B
)⋂

C
)

distributivity(
A
⋂

B
)⋃ (

A
⋂(

B
⋂
C
))

associativity

A
⋂(

B
⋃(

B
⋂
C
))

distributivity

A
⋂

B absorption law
(A−B) property of minus
LHS

– Method 2: Membership table

A B C A−B B − C LHS RHS

1 1 1 0 0 0 0
1 1 0 0 1 0 0
1 0 1 1 0 1 1
1 0 0 1 0 1 1
0 1 1 0 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

Since column 6 and 7 are equal, the two sets are equal

Exercise 4

Let A, and B be two sets in a universe U . Using set identities (no truth table or membership
table!), show the following implications:

a) if A
⋃

B = B, then
(
B −A

)⋂
(B ∪A) = B

We use a direct proof. Let p be the proposition A
⋃
B = B and let q be the proposition(

B −A
)⋂

(B ∪A) = B. Our hypothesis is that p is true. Then:(
B −A

)
∩ (B ∪A) =

(
B ∩A

)
∩ (B ∪A) Property of minus

(B ∪A) ∩ (B ∪A) DeMorgan’s Law
B ∪A Absorption law
B hypothesis

Therefore q is true. According to the method of direct proof, p→ q is true.

4



b) if A
⋂
B = A, then A

⋃
B = B

We use a direct proof. Let p be the proposition A
⋂
B = A and let q be the proposition

A
⋃
B = B. Our hypothesis is that p is true. Then:

A ∪B = (A ∩B) ∪B Hypothesis: A = A
⋂
B

B ∪ (B ∩A) Associativity
B B ∩A ⊂ B

Therefore q is true. According to the method of direct proof, p→ q is true.

Exercise 5

Let A, and B be two sets in a universe U . The symmetric difference of A and B, denoted A⊕B, is
the set containing those elements in either A or B, but not in both A and B. This definition can
be rewritten as: A⊕B = (A−B)

⋃
(B −A). Show that:

a) A⊕B =
(
A
⋂
B
)⋃ (

A
⋂

B
)

I use a membership table: Since column 3 and column 8 are equal, (A⊕B) =
(
A
⋂
B
)⋃ (

A
⋂

B
)
.

A B A⊕B A B A ∩B A ∩B
(
A
⋂
B
)⋃ (

A
⋂

B
)

1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 1
0 1 1 1 0 1 0 1
0 0 0 1 1 0 0 0

b) A⊕B = (A
⋃
B)− (A

⋂
B)

Again, I use a membership table:

A B A ∪B A ∩B (A ∪B)− (A ∩B) A⊕B

1 1 1 1 0 0
1 0 1 0 1 1
0 1 1 0 1 1
0 0 0 0 0 0

Since column 5 and 6 are equal, A⊕B = (A
⋃
B)− (A

⋂
B).

Exercise 6

Let A, and B be two sets in a universe U . Show that |A
⋃
B| = |U| − |A| − |B|+ |A

⋃
B|.
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Let us define C = A
⋂
B.

A complement law tells us that C
⋂
C = U where U is the domain. Also, C

⋂
C = ∅. Using the

inclusion-exclusion principle, we find:

|U | = |C|+ |C|

We know that |C| = |A ∩ B| = |A| + |B| − |A ∪ B|and, based on DeMorgan’s law, C = A ∪ B.
Replacing in the equation above, after rearrangement, we obtain:

|A
⋃

B| = |U | − |A| − |B|+ |A
⋃

B|

Exercise 7

a) Let A, B, and C be three sets in a universe U . Show that |A
⋃

B
⋃
C| = |A| + |B| + |C| −

|A
⋂
B| − |A

⋂
C| − |B

⋂
C|+ |A

⋂
B
⋂
C|.

From the inclusion-exclusion principle, we know that:

|A ∪B| = |A|+ |B| − |A ∩B|

Let us consider the three sets A, B and C. We observe that:

|A ∪B ∪ C| = |(A ∪B) ∪ C|

Then:

|A ∪B ∪ C| = |A ∪B|+ |C| − |(A ∪B) ∩ C|
= |A|+ |B|+ |C| − |A ∩B| − |(A ∪B) ∩ C|
= |A|+ |B|+ |C| − |A ∩B| − |(A ∩ C) ∪ (B ∩ C)|
= |A|+ |B|+ |C| − |A ∩B| − (|A ∩ C|+ |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)|)
= |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |(A ∩ C) ∩ (B ∩ C)|
= |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

b) In a group of students, 60 play soccer, 40 play hockey, and 36 play cricket, 20 play soccer
and hockey, 25 play hockey and cricket, 12 play cricket and soccer and 10 play all the three
games. Find the total number of students in the group and how many students only played
soccer? (Assume that each student in the group plays at least one game)

Let U be the domain, namely the set of all students. Let S be the set of students who play
soccer; |S| = 60. Let H be the set of students who play hockey, |H| = 40. Let C be the set
of students who play cricket, |C| = 36. We are also told that |S

⋂
H| = 20, |H

⋂
C| = 26,

|C
⋂
S| = 12, and |S

⋂
H
⋂
C| = 10.

Let C the set of students that play at least one (type) of sport: C = S
⋃
H
⋃
C. Based on

part b), we find |C| = 89. Since all the students in the group play at least one sport, thus
total number of students in the group=89.

Let SH be the set of students who play soccer and hockey, SC the set of students who
play soccer and cricket, and SS those students who only play soccer. We note that S =
SH

⋃
SC

⋃
SS. Also, |S| = 60, |SH| = 20, |SC| = 12, |SC

⋂
SH| = 10, and |SH

⋂
SS| =

|SC
⋂
SS| = |SH

⋂
SC

⋂
SS| = 0. Using part a), we get |SS| = 38.

6



Extra Credit

Let A, B, and C be three sets in a universe U . Using set identities (no truth table or membership

table!), show the following identity, (A ∪B ∪ C) ∩
(
A ∩B ∩ C

)
∩ C = B ∩ C

Let LHS = (A ∪B ∪ C) ∩
(
A ∩B ∩ C

)
∩ C and RHS = B ∩ C. Then:

LHS = (A ∪B ∪ C) ∩
(
A ∩B ∩ C

)
∩ C

(A ∪B ∪ C) ∩
(
A ∪B ∪ C

)
∩ C DeMorgan’s law(

(A ∪B ∪ C) ∩
(
A ∪B ∪ C

))
∩ C Associativity((

A ∩A
)
∪ (B ∩ C)

)
∩ C Distributivity

(B ∪ C) ∩ C Absorption Law

B ∩ C Distributivity and Absorption
RHS
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