Homework 5: due 2/12/2019

ECS 20 (Winter 2019)

Patrice Koehl
koehl@cs.ucdavis.edu
February 5, 2019

Exercise 1 (10 points for each subquestion: 20 total)

a) Show that the following statement is true: "If there exist two integers n and m such that $2 n^{2}+2 n+1=2 m$, then $2 n=3$.
b) If x and y are rational numbers such that $x<y$, show that there exists a rational number z with $x<z<y$.

Exercise 2 (10 points)

Let x be a real number. Show that $\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x+1}{3}\right\rfloor+\left\lfloor\frac{x+2}{3}\right\rfloor=\lfloor x\rfloor$.

Exercise 3 (10 points)

This is a generalization of exercise 2 :
Let x be a real number and N an integer greater or equal to 3 .
Show that $\lfloor x\rfloor=\left\lfloor\frac{x}{N}\right\rfloor+\left\lfloor\frac{x+1}{N}\right\rfloor+\ldots+\left\lfloor\frac{x+N-1}{N}\right\rfloor$.
(Hint: instead of following a proof similar to the one you used for exercise 2, define:

$$
f(x)=\lfloor x\rfloor-\left\lfloor\frac{x}{N}\right\rfloor-\left\lfloor\frac{x+1}{N}\right\rfloor-\ldots-\left\lfloor\frac{x+N-1}{N}\right\rfloor
$$

and show that $f(x)$ is periodic, with period 1.)

Exercise 4 (10 points)

Let x be a real number. Then show that $(\lceil x\rceil-x)(x-\lfloor x\rfloor) \leq \frac{1}{4}$

Exercise 5 (10 points for each subquestion: 20 total)

Let x be a real number. Solve the following equations:
a) $\left\lfloor x^{2}+x-5\right\rfloor=\frac{1}{2} x$
b) $2\lfloor 4-x\rfloor=2 x+1$

Extra Credit (5 points)

Let x and y be two real numbers such that $0<x \leq y$. We define:
a) The customized arithmetic mean m of x and $y: m=\frac{x+2 y}{3}$
b) The customized geometric mean g of x and $y: g=x^{\frac{1}{3}} y^{\frac{2}{3}}$
c) The customized harmonic mean h of x and $y: \frac{3}{h}=\left(\frac{1}{x}+\frac{2}{y}\right)$

Show that:

$$
x \leq h \leq g \leq m \leq y
$$

