Homework 5 Solutions

ECS 20 (Fall 17)

Patrice Koehl koehl@cs.ucdavis.edu

February 8, 2019

Exercise 1

a) Show that the following statement is true: "If there exist two integers n and m such that $2n^2 + 2n + 1 = 2m$, then 2n = 3.

Let P be the statement considered. P is an implication of the form $p \to q$ with p defined as "n and m are integers such that $2n^2 + 2n + 1 = 2m$ " and q defined as "2n = 3". We prove that p is false, the proposition P is therefore always true.

The proposition p is: there exists two integer n and m are integers such that $2n^2+2n+1=2m$. However, we note that:

- a) $2n^2 + 2n + 1 = 2(n^2 + n) + 1$, and, since $n^2 + n$ is an integer, $2n^2 + 2n + 1$ is odd.
- b) 2m is even, as m is an integer

If p were to be true, we would have an odd number equal to an even number... this is a contradiction, and therefore p is false. Since p is false, $p \to q$ is true.

b) If x and y are rational numbers such that x < y, show that there exists a rational number z with x < z < y.

This is an existence proof: we only need to find one example.

Let x and y be two rational numbers, then let $z = \frac{x+y}{2}$ which is also rational. Then $z - x = \frac{x+y}{2} - x = \frac{y-x}{2} > 0$ as x < y. Similarly, $y - z = y - \frac{x+y}{2} = \frac{y-x}{2} > 0$ as x < y. Therefore x < z < y and z is rational.

Exercise 2

Let x be a real number. Show that $\lfloor \frac{x}{3} \rfloor + \lfloor \frac{x+1}{3} \rfloor + \lfloor \frac{x+2}{3} \rfloor = \lfloor x \rfloor$.

Let |x| = n, where n is an integer. By definition of floor, we have:

 $n \le x < n+1.$

Any integer n can either be of the form 3k or 3k + 1 or 3k + 2 for some integer k. Thus, we consider three cases:

1) There exists an integer k such that n = 3k. We can rewrite the inequality above as:

$$3k \le x < 3k + 1$$

$$\implies \qquad k \le \frac{x}{3} < k + \frac{1}{3} < k + 1$$

$$\lfloor \frac{x}{3} \rfloor = k.$$
(1)

Similarly,

Therefore

Therefore

$$\lfloor \frac{x+1}{3} \rfloor = k \tag{2}$$

And,

$$3k+2 \le x+2 < 3k+3 \Longrightarrow \qquad k < k+\frac{2}{3} \le \frac{x+2}{3} < k+1$$

Therefore

$$\lfloor \frac{x+2}{3} \rfloor = k \tag{3}$$

Combining equations (1) and (2) and (3), we get $\lfloor \frac{x}{3} \rfloor + \lfloor \frac{x+1}{3} \rfloor + \frac{x+2}{3} \rfloor = 3k = n = \lfloor x \rfloor$

2) There exists an integer k such that
$$n = 3k + 1$$
. We can rewrite the inequality above as:

Therefore

$$\lfloor \frac{x}{3} \rfloor = k. \tag{4}$$

Similarly,

$$3k+2 \le x+1 < 3k+3 \Rightarrow k < k+\frac{2}{3} \le \frac{x+1}{3} < k+1$$

Therefore

$$\lfloor \frac{x+1}{3} \rfloor = k \tag{5}$$

Similarly,

$$3k+3 \le x+2 < 3k+4 \Longrightarrow \qquad k+1 \le \frac{x+2}{3} < k+\frac{4}{3} < k+2$$

Therefore

$$\lfloor \frac{x+2}{3} \rfloor = k+1 \tag{6}$$

Combining equations (4), (5) and (6), we get $\lfloor \frac{x}{3} \rfloor + \lfloor \frac{x+1}{3} \rfloor + \lfloor \frac{x+2}{3} \rfloor = k+k+k+1 = 3k+1 = n = \lfloor x \rfloor$

3) There exists an integer k such that n = 3k + 2. We can rewrite the inequality above as:

$$\Rightarrow \qquad 3k+2 \le x < 3k+3 \\ \implies \qquad k < k+\frac{2}{3} \le \frac{x}{3} < k+1$$

Therefore

$$\lfloor \frac{x}{3} \rfloor = k. \tag{7}$$

Similarly,

$$3k+3 \le x+1 < 3k+4$$

$$\implies \qquad k+1 \le \frac{x+1}{3} < k+\frac{4}{3} < k+2$$

Therefore

$$\lfloor \frac{x+1}{3} \rfloor = k+1 \tag{8}$$

Similarly,

$$3k + 4 \le x + 2 < 3k + 5 \implies k + 1 < k + \frac{4}{3} \le \frac{x + 2}{3} < k + \frac{5}{3} < k + 2$$

Therefore

$$\lfloor \frac{x+2}{3} \rfloor = k+1 \tag{9}$$

Combining equations (7), (8) and (9), we get $\lfloor \frac{x}{3} \rfloor + \lfloor \frac{x+1}{3} \rfloor + \lfloor \frac{x+2}{3} \rfloor = k + k + 1 + k + 1 = 3k + 2 = n = \lfloor x \rfloor$

Exercise 3

Let x be a real number and N an integer greater or equal to 3. Show that $\lfloor x \rfloor = \lfloor \frac{x}{N} \rfloor + \lfloor \frac{x+1}{N} \rfloor + \ldots + \lfloor \frac{x+N-1}{N} \rfloor$.

We could use a proof by case that generalizes the solution described for exercise 2, using N case; there is however a faster and maybe more elegant solution.

Let us define:

 $f(x) = \lfloor x \rfloor - \lfloor \frac{x}{N} \rfloor - \lfloor \frac{x+1}{N} \rfloor - \ldots - \lfloor \frac{x+N-1}{N} \rfloor$

We show first that f(x) is periodic, with period 1. For this, we need to show that: $\forall x \in \mathbb{R}, \quad f(x+1) = f(x)$

Let x be a real number. Notice that:

$$\begin{aligned} f\left(x+1\right) &= \left\lfloor x+1 \right\rfloor - \left\lfloor \frac{x+1}{N} \right\rfloor - \left\lfloor \frac{x+2}{N} \right\rfloor - \dots - \left\lfloor \frac{x+N-1}{N} \right\rfloor - \left\lfloor \frac{x+N}{N} \right\rfloor \\ &= \left\lfloor x \right\rfloor + 1 - \left\lfloor \frac{x+1}{N} \right\rfloor - \left\lfloor \frac{x+2}{N} \right\rfloor - \dots - \left\lfloor \frac{x+N-1}{N} \right\rfloor - \left\lfloor \frac{x}{N} + 1 \right\rfloor \\ &= \left\lfloor x \right\rfloor + 1 - \left\lfloor \frac{x+1}{N} \right\rfloor - \left\lfloor \frac{x+2}{N} \right\rfloor - \dots - \left\lfloor \frac{x+N-1}{N} \right\rfloor - \left\lfloor \frac{x}{N} \right\rfloor - 1 \\ &= f(x) \end{aligned}$$

Since this is true with no conditions on x, it is true for all x, and therefore f is periodic, with 1 being one period.

A periodic function needs to be defined only on one period, here in the interval [0, 1). Let x be in this interval. Then:

$$\begin{array}{l} 0 \leq x < 1 \\ 0 \leq \frac{x}{N} < \frac{1}{N} < 1 \\ 0 \leq \frac{x+1}{N} < \frac{1+1}{N} = \frac{2}{N} < 1 \\ \dots \\ 0 \leq \frac{x+N-1}{N} < \frac{1+N-1}{N} = \frac{N}{N} = 1 \end{array}$$

Therefore f(x) = 0.

Since f(x) = 0 on one of its period, we have $f(x) = 0 \quad \forall x \in \mathbb{R}$. Therefore: $\lfloor x \rfloor = \lfloor \frac{x}{N} \rfloor + \lfloor \frac{x+1}{N} \rfloor + \ldots + \lfloor \frac{x+N-1}{N} \rfloor$

Exercise 4

Let x be a real number. Then show that $(\lceil x \rceil - x)(x - \lfloor x \rfloor) \leq \frac{1}{4}$ When x is integer, then $x = \lceil x \rceil = \lfloor x \rfloor$ implies $(\lceil x \rceil - x)(x - \lfloor x \rfloor) = 0 \leq \frac{1}{4}$. If x is not an integer, there exists a real number ϵ such that $x = \lfloor x \rfloor + \epsilon$ where $1 > \epsilon > 0$. Then $(x - \lfloor x \rfloor) = \epsilon$ and $(\lceil x \rceil - x) = 1 - \epsilon$. Then

$$\begin{split} \left(\lceil x \rceil - x \right) \left(x - \lfloor x \rfloor \right) &= \epsilon (1 - \epsilon) \\ &= \epsilon - \epsilon^2 \\ &= \frac{1}{4} - (\epsilon^2 - \epsilon + \frac{1}{4}) \\ &= \frac{1}{4} - (\epsilon - \frac{1}{2})^2 \\ &\leq \frac{1}{4} \end{split}$$

Exercise 5

Let x be a real number. Solve the following equations:

a) $\lfloor x^2 + x - 5 \rfloor = \frac{1}{2}x$

Let x be a real number. We notice first that $\lfloor x^2 + x - 5 \rfloor$ is an integer. Therefore, if x is a solution of the equation then $\frac{1}{2}x$ should also be an integer, let say k. If x = 2k, for some integer k, solves the equation, then $(x^2 + x - 5)$ is an integer so $\lfloor x^2 + x - 5 \rfloor = (x^2 + x - 5)$ and $x^2 + x - 5 = k$. This implies

$$4k^{2} + 2k - 5 = k$$

$$\implies 4k^{2} + k - 5 = 0$$

$$\implies 4k^{2} - 4k + 5k - 5 = 0$$

$$\implies 4k(k - 1) + 5(k - 1) = 0$$

$$\implies (k - 1)(4k + 5) = 0$$

$$\implies k = 1, k = -\frac{5}{4}$$

As k is an integer the only solution is k = 1 i.e. x = 2.

b) 2|4-x| = 2x+1 for $x \in \mathbb{R}$

Let x be a real number that solves the equation. We notice first that $\lfloor 4 - x \rfloor$ is an integer, which we write as k. Then, the equation gives 2k = 2x + 1, where k is the integer defined before, and therefore $x = k - \frac{1}{2}$. Then

$$\lfloor 4 - x \rfloor = k$$

$$\implies \qquad \lfloor 4 - (k - \frac{1}{2}) \rfloor = k$$

$$\implies \qquad \lfloor 4 - k + \frac{1}{2} \rfloor = k$$

$$\implies \qquad 4 - k = k$$

$$\implies \qquad k = 2$$

$$\implies \qquad k = k - \frac{1}{2} = \frac{3}{2}$$

So, $x = \frac{3}{2}$ solves the equation.

Extra Credit

Let x and y be two real numbers such that $0 < x \le y$. We define:

- a) The customized arithmetic mean m of x and y: $m = \frac{x+2y}{3}$
- b) The customized geometric mean g of x and y: $g = x^{\frac{1}{3}}y^{\frac{2}{3}}$

c) The customized harmonic mean h of x and y: $\frac{3}{h} = \left(\frac{1}{x} + \frac{2}{y}\right)$

Show that:

$$x \leq h \leq g \leq m \leq y$$

We will proceed by steps:

- a) Let us show first that:
 - i) $x \le m \le y$

Notice that: $m - x = \frac{x+2y-3x}{3} = \frac{2(y-x)}{3} \ge 0$ since $y \ge x$; therefore $m \ge x$. Similarly, $y - m = \frac{3y-x-2y}{3} = \frac{y-x}{3} \ge 0$; therefore $y \ge m$.

ii) $x \le g \le y$

Notice that $g - x = x^{\frac{1}{3}}y^{\frac{2}{3}} - x^{\frac{1}{3}}x^{\frac{2}{3}} = x^{\frac{1}{3}}\left(y^{\frac{2}{3}} - x^{\frac{2}{3}}\right)$. Since $x \le y$ and $f(x) := x^{\frac{2}{3}}$ is an increasing function of $x, g - x \ge 0$; therefore $g \ge x$. Similarly, $y - g = y^{\frac{1}{3}}y^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{2}{3}} = y^{\frac{2}{3}}\left(y^{\frac{1}{3}} - x^{\frac{1}{3}}\right)$. Since $x \le y$ and $f(x) := x^{\frac{1}{3}}$ is an increasing function of $x, y - g \ge 0$; therefore $y \ge g$.

iii) $x \le h \le y$ Notice that $\frac{1}{h}$ is the customized arithmetic mean of $\frac{1}{x}$ and $\frac{1}{y}$. From above, we can say that $\frac{1}{y} \le \frac{1}{h} \le \frac{1}{x}$ from which we deduce that $x \le h \le y$.

b)
$$g \le m$$

Since, both g and m are positive, therefore

 $m-g\geq 0 \iff 27m^3-27g^3\geq 0 \iff (x+2y)^3-27xy^2\geq 0.$

Now, in these kinds of inequalities, it is always helpful to find the special case (possibly by intuition or hit and trial) when the equality holds. Note that when x = y, then $m = x = g \implies (x + 2y)^3 - 27xy^2 = 0$. So, we can expect that (x - y) is a factor in $(x + 2y)^3 - 27xy^2$. Also if the polynomial attains a minimum at x = y, then there should be factor $(x - y)^2$ in $(x + 2y)^3 - 27xy^2$. Now, we factorize

$$\begin{aligned} (x+2y)^3 - 27xy^2 &= x^3 + 6x^2y + 12xy^2 + 8y^3 - 27xy^2 \\ &= x^3 + 6x^2y - 15xy^2 + 8y^3 \\ &= x^3 - 2x^2y + xy^2 + 8x^2y - 16xy^2 + 8y^3 \\ &= x(x-y)^2 + 8y(x-y)^2 \\ &= (x+8y)(x-y)^2 \\ &\ge 0 \end{aligned}$$

as $y \ge x > 0$. Hence, $m - g \ge 0$ i.e. $m \ge g$

c) $h \leq g$

We note again that $\frac{1}{h}$ is the customized arithmetic mean of $\frac{1}{x}$ and $\frac{1}{y}$. The customized geometric mean of $\frac{1}{x}$ and $\frac{1}{y}$ is $(\frac{1}{x})^{\frac{1}{3}}(\frac{1}{y})^{\frac{2}{3}} = \frac{1}{x^{\frac{1}{3}}y^{\frac{2}{3}}} = \frac{1}{g}$. From b) above, we have $\frac{1}{g} \leq \frac{1}{h}$, therefore $h \leq g$.

From a), b), and c), we can conclude that $x \le h \le g \le m \le y$.