Homework 5 Solutions

ECS 20 (Fall 17)

Patrice Koehl
koehl@cs.ucdavis.edu

February 8, 2019

Exercise 1

a) Show that the following statement is true: "If there exist two integers n and m such that $2 n^{2}+2 n+1=2 m$, then $2 n=3$.
Let P be the statement considered. P is an implication of the form $p \rightarrow q$ with p defined as $" n$ and m are integers such that $2 n^{2}+2 n+1=2 m "$ and q defined as $" 2 n=3 "$. We prove that p is false, the proposition P is therefore always true.

The proposition p is: there exists two integer n and m are integers such that $2 n^{2}+2 n+1=2 m$. However, we note that:
a) $2 n^{2}+2 n+1=2\left(n^{2}+n\right)+1$, and, since $n^{2}+n$ is an integer, $2 n^{2}+2 n+1$ is odd.
b) $2 m$ is even, as m is an integer

If p were to be true, we would have an odd number equal to an even number... this is a contradiction, and therefore p is false. Since p is false, $p \rightarrow q$ is true.
b) If x and y are rational numbers such that $x<y$, show that there exists a rational number z with $x<z<y$.
This is an existence proof: we only need to find one example.
Let x and y be two rational numbers, then let $z=\frac{x+y}{2}$ which is also rational. Then $z-x=\frac{x+y}{2}-x=\frac{y-x}{2}>0$ as $x<y$.
Similarly,
$y-z=y-\frac{x+y}{2}=\frac{y-x}{2}>0$ as $x<y$.
Therefore $x<z<y$ and z is rational.

Exercise 2

Let x be a real number. Show that $\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x+1}{3}\right\rfloor+\left\lfloor\frac{x+2}{3}\right\rfloor=\lfloor x\rfloor$.
Let $\lfloor x\rfloor=n$, where n is an integer. By definition of floor, we have:
$n \leq x<n+1$.
Any integer n can either be of the form $3 k$ or $3 k+1$ or $3 k+2$ for some integer k. Thus, we consider three cases:

1) There exists an integer k such that $n=3 k$. We can rewrite the inequality above as:

$$
\begin{array}{ll}
& 3 k \leq x<3 k+1 \\
\Longrightarrow \quad & k \leq \frac{x}{3}<k+\frac{1}{3}<k+1
\end{array}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x}{3}\right\rfloor=k . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
& 3 k+1 \leq x+1<3 k+2 \\
& \Longrightarrow \quad k<k+\frac{1}{3} \leq \frac{x+1}{3}<k+\frac{2}{3}<k+1
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+1}{3}\right\rfloor=k \tag{2}
\end{equation*}
$$

And,

$$
\begin{aligned}
& 3 k+2 \leq x+2<3 k+3 \\
& \Longrightarrow \quad \\
& k<k+\frac{2}{3} \leq \frac{x+2}{3}<k+1
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+2}{3}\right\rfloor=k \tag{3}
\end{equation*}
$$

Combining equations (1) and (2) and (3), we get $\left.\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x+1}{3}\right\rfloor+\frac{x+2}{3}\right\rfloor=3 k=n=\lfloor x\rfloor$
2) There exists an integer k such that $n=3 k+1$. We can rewrite the inequality above as:

$$
\begin{aligned}
& 3 k+1 \leq x<3 k+2 \\
\Longrightarrow \quad & k<k+\frac{1}{3} \leq \frac{x}{3}<k+\frac{2}{3}<k+1
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x}{3}\right\rfloor=k . \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{array}{ll}
& 3 k+2 \leq x+1<3 k+3 \\
\Longrightarrow \quad & k<k+\frac{2}{3} \leq \frac{x+1}{3}<k+1
\end{array}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+1}{3}\right\rfloor=k \tag{5}
\end{equation*}
$$

Similarly,

$$
\begin{array}{ll}
& 3 k+3 \leq x+2<3 k+4 \\
\Longrightarrow \quad & k+1 \leq \frac{x+2}{3}<k+\frac{4}{3}<k+2
\end{array}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+2}{3}\right\rfloor=k+1 \tag{6}
\end{equation*}
$$

Combining equations (4), (5) and (6), we get $\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x+1}{3}\right\rfloor+\left\lfloor\frac{x+2}{3}\right\rfloor=k+k+k+1=3 k+1=$ $n=\lfloor x\rfloor$
3) There exists an integer k such that $n=3 k+2$. We can rewrite the inequality above as:

$$
\begin{array}{ll}
& 3 k+2 \leq x<3 k+3 \\
\Longrightarrow \quad & k<k+\frac{2}{3} \leq \frac{x}{3}<k+1
\end{array}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x}{3}\right\rfloor=k \tag{7}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
& 3 k+3 \leq x+1<3 k+4 \\
& \Longrightarrow \quad
\end{aligned} \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+1}{3}\right\rfloor=k+1 \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
& 3 k+4 \leq x+2<3 k+5 \\
& \Longrightarrow \quad \\
& k+1<k+\frac{4}{3} \leq \frac{x+2}{3}<k+\frac{5}{3}<k+2
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{x+2}{3}\right\rfloor=k+1 \tag{9}
\end{equation*}
$$

Combining equations (7), (8) and (9), we get $\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x+1}{3}\right\rfloor+\left\lfloor\frac{x+2}{3}\right\rfloor=k+k+1+k+1=$ $3 k+2=n=\lfloor x\rfloor$

Exercise 3

Let x be a real number and N an integer greater or equal to 3 .
Show that $\lfloor x\rfloor=\left\lfloor\frac{x}{N}\right\rfloor+\left\lfloor\frac{x+1}{N}\right\rfloor+\ldots+\left\lfloor\frac{x+N-1}{N}\right\rfloor$.
We could use a proof by case that generalizes the solution described for exercise 2 , using N case; there is however a faster and maybe more elegant solution.

Let us define:

$$
f(x)=\lfloor x\rfloor-\left\lfloor\frac{x}{N}\right\rfloor-\left\lfloor\frac{x+1}{N}\right\rfloor-\ldots-\left\lfloor\frac{x+N-1}{N}\right\rfloor
$$

We show first that $f(x)$ is periodic, with period 1. For this, we need to show that:
$\forall x \in \mathbb{R}, \quad f(x+1)=f(x)$
Let x be a real number. Notice that:

$$
\begin{aligned}
f(x+1) & =\lfloor x+1\rfloor-\left\lfloor\frac{x+1}{N}\right\rfloor-\left\lfloor\frac{x+2}{N}\right\rfloor-\ldots-\left\lfloor\frac{x+N-1}{N}\right\rfloor-\left\lfloor\frac{x+N}{N}\right\rfloor \\
& =\lfloor x\rfloor+1-\left\lfloor\frac{x+1}{N}\right\rfloor-\left\lfloor\frac{x+2}{N}\right\rfloor-\ldots-\left\lfloor\frac{x+N-1}{N}\right\rfloor-\left\lfloor\frac{x}{N}+1\right\rfloor \\
& =\lfloor x\rfloor+1-\left\lfloor\frac{x+1}{N}\right\rfloor-\left\lfloor\frac{x+2}{N}\right\rfloor-\ldots-\left\lfloor\frac{x+N-1}{N}\right\rfloor-\left\lfloor\frac{x}{N}\right\rfloor-1 \\
& =f(x)
\end{aligned}
$$

Since this is true with no conditions on x, it is true for all x, and therefore f is periodic, with 1 being one period.

A periodic function needs to be defined only on one period, here in the interval $[0,1)$. Let x be in this interval. Then:

$$
\begin{aligned}
& 0 \leq x<1 \\
& 0 \leq \frac{x}{N}<\frac{1}{N}<1 \\
& 0 \leq \frac{x+1}{N}<\frac{1+1}{N}=\frac{2}{N}<1 \\
& \cdots \\
& 0 \leq \frac{x+N-1}{N}<\frac{1+N-1}{N}=\frac{N}{N}=1
\end{aligned}
$$

Therefore $f(x)=0$.
Since $f(x)=0$ on one of its period, we have $f(x)=0 \quad \forall x \in \mathbb{R}$. Therefore:

$$
\lfloor x\rfloor=\left\lfloor\frac{x}{N}\right\rfloor+\left\lfloor\frac{x+1}{N}\right\rfloor+\ldots+\left\lfloor\frac{x+N-1}{N}\right\rfloor
$$

Exercise 4

Let x be a real number. Then show that $(\lceil x\rceil-x)(x-\lfloor x\rfloor) \leq \frac{1}{4}$
When x is integer, then $x=\lceil x\rceil=\lfloor x\rfloor$ implies $(\lceil x\rceil-x)(x-\lfloor x\rfloor)=0 \leq \frac{1}{4}$. If x is not an integer, there exista a real number ϵ such that $x=\lfloor x\rfloor+\epsilon$ where $1>\epsilon>0$. Then $(x-\lfloor x\rfloor)=\epsilon$ and
$(\lceil x\rceil-x)=1-\epsilon$. Then

$$
\begin{aligned}
(\lceil x\rceil-x)(x-\lfloor x\rfloor) & =\epsilon(1-\epsilon) \\
& =\epsilon-\epsilon^{2} \\
& =\frac{1}{4}-\left(\epsilon^{2}-\epsilon+\frac{1}{4}\right) \\
& =\frac{1}{4}-\left(\epsilon-\frac{1}{2}\right)^{2} \\
& \leq \frac{1}{4}
\end{aligned}
$$

Exercise 5

Let x be a real number. Solve the following equations:
a) $\left\lfloor x^{2}+x-5\right\rfloor=\frac{1}{2} x$

Let x be a real number. We notice first that $\left\lfloor x^{2}+x-5\right\rfloor$ is an integer. Therefore, if x is a solution of the equation then $\frac{1}{2} x$ should also be an integer, let say k. If $x=2 k$, for some integer k, solves the equation, then $\left(x^{2}+x-5\right)$ is an integer so $\left\lfloor x^{2}+x-5\right\rfloor=\left(x^{2}+x-5\right)$ and $x^{2}+x-5=k$. This implies

$$
\begin{array}{ll}
& 4 k^{2}+2 k-5=k \\
\Longrightarrow & 4 k^{2}+k-5=0 \\
\Longrightarrow & 4 k^{2}-4 k+5 k-5=0 \\
\Longrightarrow & 4 k(k-1)+5(k-1)=0 \\
\Longrightarrow & (k-1)(4 k+5)=0 \\
\Longrightarrow \quad & k=1, k=-\frac{5}{4}
\end{array}
$$

As k is an integer the only solution is $k=1$ i.e. $x=2$.
b) $2\lfloor 4-x\rfloor=2 x+1$ for $x \in \mathbb{R}$

Let x be a real number that solves the equation. We notice first that $\lfloor 4-x\rfloor$ is an integer, which we write as k. Then, the equation gives $2 k=2 x+1$, where k is the integer defined before, and therefore $x=k-\frac{1}{2}$. Then

$$
\begin{array}{ll}
& \lfloor 4-x\rfloor=k \\
\Longrightarrow & \left\lfloor 4-\left(k-\frac{1}{2}\right)\right\rfloor=k \\
\Longrightarrow \quad & \left\lfloor 4-k+\frac{1}{2}\right\rfloor=k \\
\Longrightarrow \quad & 4-k=k \\
\Longrightarrow \quad & k=2 \\
\Longrightarrow \quad & x=k-\frac{1}{2}=\frac{3}{2}
\end{array}
$$

So, $x=\frac{3}{2}$ solves the equation.

Extra Credit

Let x and y be two real numbers such that $0<x \leq y$. We define:
a) The customized arithmetic mean m of x and $y: m=\frac{x+2 y}{3}$
b) The customized geometric mean g of x and $y: g=x^{\frac{1}{3}} y^{\frac{2}{3}}$
c) The customized harmonic mean h of x and y : $\frac{3}{h}=\left(\frac{1}{x}+\frac{2}{y}\right)$

Show that:

$$
x \leq h \leq g \leq m \leq y
$$

We will proceed by steps:
a) Let us show first that:
i) $x \leq m \leq y$

Notice that: $m-x=\frac{x+2 y-3 x}{3}=\frac{2(y-x)}{3} \geq 0$ since $y \geq x$; therefore $m \geq x$.
Similarly, $y-m=\frac{3 y-x-2 y}{3}=\frac{y-x}{3} \geq 0$; therefore $y \geq m$.
ii) $x \leq g \leq y$

Notice that $g-x=x^{\frac{1}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}} x^{\frac{2}{3}}=x^{\frac{1}{3}}\left(y^{\frac{2}{3}}-x^{\frac{2}{3}}\right)$. Since $x \leq y$ and $f(x):=x^{\frac{2}{3}}$ is an increasing function of $x, g-x \geq 0$; therefore $g \geq x$.
Similarly, $y-g=y^{\frac{1}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}} y^{\frac{2}{3}}=y^{\frac{2}{3}}\left(y^{\frac{1}{3}}-x^{\frac{1}{3}}\right)$. Since $x \leq y$ and $f(x):=x^{\frac{1}{3}}$ is an increasing function of $x, y-g \geq 0$; therefore $y \geq g$.
iii) $x \leq h \leq y$

Notice that $\frac{1}{h}$ is the customized arithmetic mean of $\frac{1}{x}$ and $\frac{1}{y}$. From above, we can say that $\frac{1}{y} \leq \frac{1}{h} \leq \frac{1}{x}$ from which we deduce that $x \leq h \leq y$.
b) $g \leq m$

Since, both g and m are positive, therefore
$m-g \geq 0 \Longleftrightarrow 27 m^{3}-27 g^{3} \geq 0 \Longleftrightarrow(x+2 y)^{3}-27 x y^{2} \geq 0$.
Now, in these kinds of inequalities, it is always helpful to find the special case (possibly by intuition or hit and trial) when the equality holds. Note that when $x=y$, then $m=x=g$ $\Longrightarrow(x+2 y)^{3}-27 x y^{2}=0$. So, we can expect that $(x-y)$ is a factor in $(x+2 y)^{3}-27 x y^{2}$. Also if the polynomial attains a minimum at $x=y$, then there should be factor $(x-y)^{2}$ in $(x+2 y)^{3}-27 x y^{2}$. Now, we factorize

$$
\begin{aligned}
(x+2 y)^{3}-27 x y^{2} & =x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}-27 x y^{2} \\
& =x^{3}+6 x^{2} y-15 x y^{2}+8 y^{3} \\
& =x^{3}-2 x^{2} y+x y^{2}+8 x^{2} y-16 x y^{2}+8 y^{3} \\
& =x(x-y)^{2}+8 y(x-y)^{2} \\
& =(x+8 y)(x-y)^{2} \\
& \geq 0
\end{aligned}
$$

as $y \geq x>0$. Hence, $m-g \geq 0$ i.e. $m \geq g$
c) $h \leq g$

We note again that $\frac{1}{h}$ is the customized arithmetic mean of $\frac{1}{x}$ and $\frac{1}{y}$. The customized geometric mean of $\frac{1}{x}$ and $\frac{1}{y}$ is $\left(\frac{1}{x}\right)^{\frac{1}{3}}\left(\frac{1}{y}\right)^{\frac{2}{3}}=\frac{1}{x^{\frac{1}{y}} y^{\frac{2}{3}}}=\frac{1}{g}$. From b) above, we have $\frac{1}{g} \leq \frac{1}{h}$, therefore $h \leq g$.

From a), b), and c), we can conclude that $x \leq h \leq g \leq m \leq y$.

