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Exercise 1

a) Show that the following statement is true: ”If there exist two integers n and m such that
2n2 + 2n+ 1 = 2m, then 2n = 3.

Let P be the statement considered. P is an implication of the form p→ q with p defined as
”n and m are integers such that 2n2 + 2n + 1 = 2m” and q defined as ”2n = 3”. We prove
that p is false, the proposition P is therefore always true.

The proposition p is: there exists two integer n and m are integers such that 2n2+2n+1 = 2m.
However, we note that:

a) 2n2 + 2n+ 1 = 2(n2 + n) + 1, and, since n2 + n is an integer, 2n2 + 2n+ 1 is odd.

b) 2m is even, as m is an integer

If p were to be true, we would have an odd number equal to an even number... this is a
contradiction, and therefore p is false. Since p is false, p→ q is true.

b) If x and y are rational numbers such that x < y, show that there exists a rational number z
with x < z < y.
This is an existence proof: we only need to find one example.

Let x and y be two rational numbers, then let z = x+y
2 which is also rational. Then

z − x = x+y
2 − x = y−x

2 > 0 as x < y.
Similarly,
y − z = y − x+y

2 = y−x
2 > 0 as x < y.

Therefore x < z < y and z is rational.

Exercise 2

Let x be a real number. Show that bx3 c+ bx+1
3 c+ bx+2

3 c = bxc.

Let bxc = n, where n is an integer. By definition of floor, we have:
n ≤ x < n+ 1.
Any integer n can either be of the form 3k or 3k + 1 or 3k + 2 for some integer k. Thus, we

consider three cases:
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1) There exists an integer k such that n = 3k. We can rewrite the inequality above as:

3k ≤ x < 3k + 1

=⇒ k ≤ x

3
< k +

1

3
< k + 1

Therefore

bx
3
c = k. (1)

Similarly,

3k + 1 ≤ x+ 1 < 3k + 2

=⇒ k < k +
1

3
≤ x+ 1

3
< k +

2

3
< k + 1

Therefore

bx+ 1

3
c = k (2)

And,

3k + 2 ≤ x+ 2 < 3k + 3

=⇒ k < k +
2

3
≤ x+ 2

3
< k + 1

Therefore

bx+ 2

3
c = k (3)

Combining equations (1) and (2) and (3), we get bx3 c+ bx+1
3 c+ x+2

3 c = 3k = n = bxc

2) There exists an integer k such that n = 3k + 1. We can rewrite the inequality above as:

3k + 1 ≤ x < 3k + 2

=⇒ k < k +
1

3
≤ x

3
< k +

2

3
< k + 1

Therefore

bx
3
c = k. (4)

Similarly,

3k + 2 ≤ x+ 1 < 3k + 3

=⇒ k < k +
2

3
≤ x+ 1

3
< k + 1

Therefore

bx+ 1

3
c = k (5)
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Similarly,

3k + 3 ≤ x+ 2 < 3k + 4

=⇒ k + 1 ≤ x+ 2

3
< k +

4

3
< k + 2

Therefore

bx+ 2

3
c = k + 1 (6)

Combining equations (4), (5) and (6), we get bx3 c+ bx+1
3 c+ bx+2

3 c = k+ k+ k+ 1 = 3k+ 1 =
n = bxc

3) There exists an integer k such that n = 3k + 2. We can rewrite the inequality above as:

3k + 2 ≤ x < 3k + 3

=⇒ k < k +
2

3
≤ x

3
< k + 1

Therefore

bx
3
c = k. (7)

Similarly,

3k + 3 ≤ x+ 1 < 3k + 4

=⇒ k + 1 ≤ x+ 1

3
< k +

4

3
< k + 2

Therefore

bx+ 1

3
c = k + 1 (8)

Similarly,

3k + 4 ≤ x+ 2 < 3k + 5

=⇒ k + 1 < k +
4

3
≤ x+ 2

3
< k +

5

3
< k + 2

Therefore

bx+ 2

3
c = k + 1 (9)

Combining equations (7), (8) and (9), we get bx3 c + bx+1
3 c + bx+2

3 c = k + k + 1 + k + 1 =
3k + 2 = n = bxc
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Exercise 3

Let x be a real number and N an integer greater or equal to 3.
Show that bxc = b xN c+ bx+1

N c+ . . .+ bx+N−1
N c.

We could use a proof by case that generalizes the solution described for exercise 2, using N
case; there is however a faster and maybe more elegant solution.

Let us define:

f(x) = bxc − b xN c − b
x+1
N c − . . .− b

x+N−1
N c

We show first that f(x) is periodic, with period 1. For this, we need to show that:
∀x ∈ R, f (x+ 1) = f(x)

Let x be a real number. Notice that:

f (x+ 1) = bx+ 1c − bx+ 1

N
c − bx+ 2

N
c − . . .− bx+N − 1

N
c − bx+N

N
c

= bxc+ 1− bx+ 1

N
c − bx+ 2

N
c − . . .− bx+N − 1

N
c − b x

N
+ 1c

= bxc+ 1− bx+ 1

N
c − bx+ 2

N
c − . . .− bx+N − 1

N
c − b x

N
c − 1

= f(x)

Since this is true with no conditions on x, it is true for all x, and therefore f is periodic, with 1
being one period.

A periodic function needs to be defined only on one period, here in the interval [0, 1). Let x be
in this interval. Then:

0 ≤ x < 1

0 ≤ x

N
<

1

N
< 1

0 ≤ x+ 1

N
<

1 + 1

N
=

2

N
< 1

. . .

0 ≤ x+N − 1

N
<

1 +N − 1

N
=
N

N
= 1

Therefore f(x) = 0.

Since f(x) = 0 on one of its period, we have f(x) = 0 ∀x ∈ R. Therefore:

bxc = b xN c+ bx+1
N c+ . . .+ bx+N−1

N c

Exercise 4

Let x be a real number. Then show that (dxe − x) (x− bxc) ≤ 1
4

When x is integer, then x = dxe = bxc implies (dxe − x) (x− bxc) = 0 ≤ 1
4 . If x is not an integer,

there exista a real number ε such that x = bxc + ε where 1 > ε > 0. Then(x− bxc) = ε and
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(dxe − x) = 1− ε. Then

(dxe − x) (x− bxc) = ε(1− ε)
= ε− ε2

=
1

4
− (ε2 − ε+

1

4
)

=
1

4
− (ε− 1

2
)2

≤ 1

4

Exercise 5

Let x be a real number. Solve the following equations:

a) bx2 + x− 5c = 1
2x

Let x be a real number. We notice first that bx2 + x − 5c is an integer. Therefore, if x is
a solution of the equation then 1

2x should also be an integer, let say k. If x = 2k, for some
integer k, solves the equation, then (x2 + x− 5) is an integer so bx2 + x− 5c = (x2 + x− 5)
and x2 + x− 5 = k. This implies

4k2 + 2k − 5 = k

=⇒ 4k2 + k − 5 = 0

=⇒ 4k2 − 4k + 5k − 5 = 0

=⇒ 4k(k − 1) + 5(k − 1) = 0

=⇒ (k − 1)(4k + 5) = 0

=⇒ k = 1, k = −5

4

As k is an integer the only solution is k = 1 i.e. x = 2.

b) 2b4− xc = 2x+ 1 for x ∈ R
Let x be a real number that solves the equation. We notice first that b4 − xc is an integer,
which we write as k. Then, the equation gives 2k = 2x + 1, where k is the integer defined
before, and therefore x = k − 1

2 . Then

b4− xc = k

=⇒ b4− (k − 1

2
)c = k

=⇒ b4− k +
1

2
c = k

=⇒ 4− k = k

=⇒ k = 2

=⇒ x = k − 1

2
=

3

2

So, x = 3
2 solves the equation.
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Extra Credit

Let x and y be two real numbers such that 0 < x ≤ y. We define:

a) The customized arithmetic mean m of x and y: m =
x+ 2y

3

b) The customized geometric mean g of x and y: g = x
1
3 y

2
3

c) The customized harmonic mean h of x and y:
3

h
=

(
1

x
+

2

y

)
Show that:

x ≤ h ≤ g ≤ m ≤ y

We will proceed by steps:

a) Let us show first that:

i) x ≤ m ≤ y
Notice that: m− x = x+2y−3x

3 = 2(y−x)
3 ≥ 0 since y ≥ x; therefore m ≥ x.

Similarly, y −m = 3y−x−2y
3 = y−x

3 ≥ 0; therefore y ≥ m.

ii) x ≤ g ≤ y
Notice that g − x = x

1
3 y

2
3 − x

1
3x

2
3 = x

1
3

(
y

2
3 − x

2
3

)
. Since x ≤ y and f(x) := x

2
3 is an

increasing function of x, g − x ≥ 0; therefore g ≥ x.

Similarly, y − g = y
1
3 y

2
3 − x

1
3 y

2
3 = y

2
3

(
y

1
3 − x

1
3

)
. Since x ≤ y and f(x) := x

1
3 is an

increasing function of x, y − g ≥ 0; therefore y ≥ g.

iii) x ≤ h ≤ y
Notice that 1

h is the customized arithmetic mean of 1
x and 1

y . From above, we can say

that 1
y ≤

1
h ≤

1
x from which we deduce that x ≤ h ≤ y.

b) g ≤ m
Since, both g and m are positive, therefore
m− g ≥ 0 ⇐⇒ 27m3 − 27g3 ≥ 0 ⇐⇒ (x+ 2y)3 − 27xy2 ≥ 0.
Now, in these kinds of inequalities, it is always helpful to find the special case (possibly by
intuition or hit and trial) when the equality holds. Note that when x = y, then m = x = g
=⇒ (x+ 2y)3 − 27xy2 = 0. So, we can expect that (x− y) is a factor in (x+ 2y)3 − 27xy2.
Also if the polynomial attains a minimum at x = y, then there should be factor (x − y)2 in
(x+ 2y)3 − 27xy2. Now, we factorize

(x+ 2y)3 − 27xy2 = x3 + 6x2y + 12xy2 + 8y3 − 27xy2

= x3 + 6x2y − 15xy2 + 8y3

= x3 − 2x2y + xy2 + 8x2y − 16xy2 + 8y3

= x(x− y)2 + 8y(x− y)2

= (x+ 8y)(x− y)2

≥ 0

as y ≥ x > 0. Hence, m− g ≥ 0 i.e. m ≥ g
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c) h ≤ g
We note again that 1

h is the customized arithmetic mean of 1
x and 1

y . The customized geometric

mean of 1
x and 1

y is ( 1x)
1
3 ( 1y )

2
3 = 1

x
1
3 y

2
3

= 1
g . From b) above, we have 1

g ≤
1
h , therefore h ≤ g.

From a), b), and c), we can conclude that x ≤ h ≤ g ≤ m ≤ y.
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