3. Relational Model and Relational Algebra

Contents

- Fundamental Concepts of the Relational Model
- Integrity Constraints
- Translation ER schema \(\rightarrow\) Relational Database Schema
- Relational Algebra
- Modification of the Database

Overview

- Relational Model was introduced in 1970 by E.F. Codd (at IBM).

- Nice features: Simple and uniform data structures – \(\textit{relations}\) – and solid theoretical foundation (important for query processing and optimization)

- Relational Model is basis for most DBMSs, e.g., Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL, MySQL, . . .

- Typically used in conceptual design: either directly (creating tables using SQL DDL) or derived from a given Entity-Relationship schema.
Basic Structure of the Relational Model

- A relation r over collection of sets (domain values) D_1, D_2, \ldots, D_n is a subset of the Cartesian Product $D_1 \times D_2 \times \ldots \times D_n$
 A relation thus is a set of n-tuples (d_1, d_2, \ldots, d_n) where $d_i \in D_i$.

- Given the sets

 StudId = \{412, 307, 540\}
 StudName = \{Smith, Jones\}
 Major = \{CS, CSE, BIO\}

 then $r = \{(412, Smith, CS), (307, Jones, CSE), (412, Smith, CSE)\}$ is a relation over StudId \times StudName \times Major

Relation Schema, Database Schema, and Instances

- Let A_1, A_2, \ldots, A_n be attribute names with associated domains D_1, D_2, \ldots, D_n, then

 $R(A_1: D_1, A_2: D_2, \ldots, A_n: D_n)$

 is a relation schema. For example,

 Student(StudId: integer, StudName: string, Major: string)

- A relation schema specifies the name and the structure of the relation.

- A collection of relation schemas is called a relational database schema.
Relation Schema, Database Schema, and Instances

- A relation instance \(r(R) \) of a relation schema can be thought of as a table with \(n \) columns and a number of rows. Instead of relation instance we often just say relation. An instance of a database schema thus is a collection of relations.

- An element \(t \in r(R) \) is called a tuple (or row).

<table>
<thead>
<tr>
<th>Student</th>
<th>StudId</th>
<th>StudName</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>412</td>
<td>Smith</td>
<td>CS</td>
</tr>
<tr>
<td></td>
<td>307</td>
<td>Jones</td>
<td>CSE</td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>Smith</td>
<td>CSE</td>
</tr>
</tbody>
</table>

- A relation has the following properties:
 - the order of rows is irrelevant, and
 - there are no duplicate rows in a relation

Integrity Constraints in the Relational Model

- Integrity constraints (ICs): must be true for any instance of a relation schema (admissible instances)
 - ICs are specified when the schema is defined
 - ICs are checked by the DBMS when relations (instances) are modified
- If DBMS checks ICs, then the data managed by the DBMS more closely correspond to the real-world scenario that is being modeled!
Primary Key Constraints

- A set of attributes is a *key* for a relation if:
 1. no two distinct tuples have the same values for all key attributes, and
 2. this is not true for any subset of that key.

- If there is more than one key for a relation (i.e., we have a set of candidate keys), one is chosen (by the designer or DBA) to be the *primary key*.

 `Student(StudId : number, StudName : string, Major : string)`

- For candidate keys not chosen as primary key, *uniqueness* constraints can be specified.

- Note that it is often useful to introduce an artificial primary key (as a single attribute) for a relation, in particular if this relation is often “ referenced”.

3. Relational Model and Relational Algebra
Foreign Key Constraints and Referential Integrity

- Set of attributes in one relation (child relation) that is used to “refer” to a tuple in another relation (parent relation). Foreign key must refer to the primary key of the referenced relation.

- Foreign key attributes are required in relation schemas that have been derived from relationship types. Example:

 offers(Prodname → PRODUCTS, SName → SUPPLIERS, Price)
 orders((FName, LName) → CUSTOMERS, SName → SUPPLIERS, Prodname → PRODUCTS, Quantity)

 Foreign/primary key attributes must have matching domains.

- A foreign key constraint is **satisfied** for a tuple if either
 - some values of the foreign key attributes are *null* (meaning a reference is not known), or
 - the values of the foreign key attributes occur as the values of the primary key (of some tuple) in the parent relation.

- The combination of foreign key attributes in a relation schema typically builds the primary key of the relation, e.g.,

 offers(Prodname → PRODUCTS, SName → SUPPLIERS, Price)

- If all foreign key constraints are enforced for a relation, *referential integrity* is achieved, i.e., there are no dangling references.
Translation of an ER Schema into a Relational Schema

1. Entity type \(E(A_1, \ldots, A_n, B_1, \ldots, B_m) \)
 \[\implies \text{relation schema } E(A_1, \ldots, A_n, B_1, \ldots, B_m). \]

2. Relationship type \(R(E_1, \ldots, E_n, A_1, \ldots, A_m) \)
 with participating entity types \(E_1, \ldots, E_n; \)
 \(X_i \equiv \text{foreign key attribute(s) referencing primary key attribute(s) of} \)
 \(\text{relation schema corresponding to } E_i. \)
 \[\implies R(X_1 \rightarrow E_1, \ldots, X_n \rightarrow E_n, A_1, \ldots, A_m) \]

For a functional relationship (N:1, 1:N), an optimization is possible. Assume N:1 relationship type between \(E_1 \) and \(E_2. \)
We can extend the schema of \(E_1 \) to
\[E_1(A_1, \ldots, A_n, X_2 \rightarrow E_2, B_1, \ldots, B_m), \text{ e.g., } \]

\[\text{EMPLOYEES(EmpId, DeptNo \rightarrow DEPARTMENTS, \ldots)} \]
• Example translation:

![Diagram of the entities and relationships]

• According to step 1:

 BOOKS(DocId, Title, Publisher, Year)
 STUDENTS(StId, StName, Major, Year)
 DESCRIPTIONS(Keyword)
 AUTHORS(AName, Address)

In step 2 the relationship types are translated:

 borrows(DocId → BOOKS, StId → STUDENTS, Date)
 has-written(DocId → BOOKS, AName → AUTHORS)
 describes(DocId → BOOKS, Keyword → DESCRIPTIONS)

No need for extra relation for entity type “DESCRIPTIONS”:

 Descriptions(DocId → BOOKS, Keyword)
3.2 Relational Algebra

Query Languages

- A query language (QL) is a language that allows users to manipulate and retrieve data from a database.

- The relational model supports simple, powerful QLs (having strong formal foundation based on logics, allow for much optimization)

- Query Language ≠ Programming Language
 - QLs are not expected to be Turing-complete, not intended to be used for complex applications/computations
 - QLs support easy access to large data sets

- Categories of QLs: procedural versus declarative

- Two (mathematical) query languages form the basis for “real” languages (e.g., SQL) and for implementation
 - *Relational Algebra*: procedural, very useful for representing query execution plans, and query optimization techniques.
 - *Relational Calculus*: declarative, logic based language

- Understanding algebra (and calculus) is the key to understanding SQL, query processing and optimization.
Relational Algebra

- Procedural language

- Queries in relational algebra are applied to relation instances, result of a query is again a relation instance

- Six basic operators in relational algebra:
 - \(\text{select} \) \(\sigma \) selects a subset of tuples from reln
 - \(\text{project} \) \(\pi \) deletes unwanted columns from reln
 - \(\text{Cartesian Product} \) \(\times \) allows to combine two relations
 - \(\text{Set-difference} \) \(- \) tuples in reln. 1, but not in reln. 2
 - \(\text{Union} \) \(\cup \) tuples in reln 1 plus tuples in reln 2
 - \(\text{Rename} \) \(\rho \) renames attribute(s) and relation

- The operators take one or two relations as input and give a new relation as a result (relational algebra is “closed”).
Select Operation

- Notation: $\sigma_P(r)$

 Defined as

 $$\sigma_P(r) := \{ t \mid t \in r \text{ and } P(t) \}$$

 where
 - r is a relation (name),
 - P is a formula in propositional calculus, composed of conditions of the form

 $$<\text{attribute}> = <\text{attribute}> \text{ or } <\text{constant}>$$

 Instead of “=” any other comparison predicate is allowed ($\neq, <, >$ etc).

 Conditions can be composed through \land (and), \lor (or), \neg (not)

- Example: given the relation r

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

 $\sigma_{A=B \land D>5}(r)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>
Project Operation

- Notation: $\pi_{A_1, A_2, \ldots, A_k}(r)$

 where A_1, \ldots, A_k are attribute names and r is a relation (name).

- The result of the projection operation is defined as the relation that has k columns obtained by erasing all columns from r that are not listed.

- Duplicate rows are removed from result because relations are sets.

- Example: given the relations r

 r

 $\begin{array}{ccc}
 A & B & C \\
 \alpha & 10 & 2 \\
 \alpha & 20 & 2 \\
 \beta & 30 & 2 \\
 \beta & 40 & 4 \\
 \end{array}$

 $\pi_{A, C}(r)$

 $\begin{array}{cc}
 A & C \\
 \alpha & 2 \\
 \beta & 2 \\
 \beta & 4 \\
 \end{array}$
Cartesian Product

- Notation: $r \times s$ where both r and s are relations
 Defined as $r \times s := \{ tq \mid t \in r \text{ and } q \in s \}$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint, i.e., $R \cap S = \emptyset$.
 If attributes of $r(R)$ and $s(S)$ are not disjoint, then the rename operation must be applied first.

- Example: relations r, s:

 $$
 \begin{array}{c|c}
 r & A & B \\
 \hline
 \alpha & 1 \\
 \beta & 2 \\
 \end{array}
 \quad
 \begin{array}{c|c|c}
 s & C & D & E \\
 \hline
 \alpha & 10 & + \\
 \beta & 10 & + \\
 \beta & 20 & - \\
 \gamma & 10 & - \\
 \end{array}
 \quad
 \begin{array}{c|c|c|c|c}
 r \times s & A & B & C & D & E \\
 \hline
 \alpha & 1 & \alpha & 10 & + \\
 \alpha & 1 & \beta & 10 & + \\
 \alpha & 1 & \beta & 20 & - \\
 \alpha & 1 & \gamma & 10 & - \\
 \beta & 2 & \alpha & 10 & + \\
 \beta & 2 & \beta & 10 & + \\
 \beta & 2 & \beta & 20 & - \\
 \beta & 2 & \gamma & 10 & - \\
 \end{array}
 $$
Union Operator

- Notation: \(r \cup s \) where both \(r \) and \(s \) are relations

 Defined as \(r \cup s := \{ t \mid t \in r \text{ or } t \in s \} \)

- For \(r \cup s \) to be applicable,
 1. \(r, s \) must have the same number of attributes
 2. Attribute domains must be compatible (e.g., 3rd column of \(r \) has a data type matching the data type of the 3rd column of \(s \))

- Example: given the relations \(r \) and \(s \)

\[
\begin{array}{ccc}
\text{r} & \text{A} & \text{B} \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\end{array}
\quad
\begin{array}{ccc}
\text{s} & \text{A} & \text{B} \\
\alpha & 2 \\
\beta & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{r} \cup \text{s} & \text{A} & \text{B} \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\beta & 3 \\
\end{array}
\]

3. Relational Model and Relational Algebra
Set Difference Operator

- Notation: $r - s$ where both r and s are relations
 Defined as $r - s := \{ t \mid t \in r \text{ and } t \notin s \}$

- For $r - s$ to be applicable,
 1. r and s must have the same arity
 2. Attribute domains must be compatible

- Example: given the relations r and s

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r - s$</td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>
Rename Operation

- Allows to name and therefore to refer to the result of relational algebra expression.

- Allows to refer to a relation by more than one name (e.g., if the same relation is used twice in a relational algebra expression).

- Example:

\[\rho_x(E) \]

returns the relational algebra expression \(E \) under the name \(x \)

If a relational algebra expression \(E \) (which is a relation) has the arity \(k \), then

\[\rho_x(A_1, A_2, \ldots, A_k)(E) \]

returns the expression \(E \) under the name \(x \), and with the attribute names \(A_1, A_2, \ldots, A_k \).
Composition of Operations

- It is possible to build relational algebra expressions using multiple operators similar to the use of arithmetic operators (nesting of operators)

- Example: $\sigma_{A=C}(r \times s)$

\[
\begin{array}{|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
\alpha & 1 & \alpha & 10 & + \\
\alpha & 1 & \beta & 10 & + \\
\alpha & 1 & \beta & 20 & - \\
\alpha & 1 & \gamma & 10 & - \\
\beta & 2 & \alpha & 10 & + \\
\beta & 2 & \beta & 10 & + \\
\beta & 2 & \beta & 20 & - \\
\beta & 2 & \gamma & 10 & - \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
\alpha & 1 & \alpha & 10 & + \\
\beta & 2 & \beta & 10 & + \\
\beta & 2 & \beta & 20 & - \\
\hline
\end{array}
\]
Example Queries

Assume the following relations:

- **BOOKS** (DocId, Title, Publisher, Year)
- **STUDENTS** (StId, StName, Major, Age)
- **AUTHORS** (AName, Address)
- **borrows** (DocId, StId, Date)
- **has-written** (DocId, AName)
- **describes** (DocId, Keyword)

- List the year and title of each book.
 \[\pi_{\text{Year}, \text{Title}}(\text{BOOKS}) \]

- List all information about students whose major is CS.
 \[\sigma_{\text{Major} = 'CS'}(\text{STUDENTS}) \]

- List all students with the books they can borrow.
 \[\text{STUDENTS} \times \text{BOOKS} \]

 \[\sigma_{\text{Publisher} = 'McGraw-Hill' \land \text{Year} < 1990}(\text{BOOKS}) \]
• *List the name of those authors who are living in Davis.*

\[\pi_{\text{AName}}(\sigma_{\text{Address like 'Davis'}}(\text{AUTHORS})) \]

• *List the name of students who are older than 30 and who are not studying CS.*

\[\pi_{\text{StName}}(\sigma_{\text{Age}>30}(\text{STUDENTS})) - \pi_{\text{StName}}(\sigma_{\text{Major}='CS'}(\text{STUDENTS})) \]

• *Rename AName in the relation AUTHORS to Name.*

\[\rho_{\text{AUTHORS}}(\text{Name, Address})(\text{AUTHORS}) \]
Composed Queries (formal definition)

- A **basic expression** in the relational algebra consists of either of the following:
 - A relation in the database
 - A constant relation
 (fixed set of tuples, e.g., \{(1, 2), (1, 3), (2, 3)\})

- If E_1 and E_2 are expressions of the relational algebra, then the following expressions are relational algebra expressions, too:
 - $E_1 \cup E_2$
 - $E_1 \setminus E_2$
 - $E_1 \times E_2$
 - $\sigma_P(E_1)$ where P is a predicate on attributes in E_1
 - $\pi_A(E_1)$ where A is a list of some of the attributes in E_1
 - $\rho_x(E_1)$ where x is the new name for the result relation [and its attributes] determined by E_1
Examples of Composed Queries

1. List the names of all students who have borrowed a book and who are CS majors.

 \[\pi_{\text{StName}} \left(\sigma_{\text{STUDENTS.StId}=\text{borrows.StId}} \left(\sigma_{\text{Major}=\text{'CS'}} \left(\text{STUDENTS} \times \text{borrows} \right) \right) \right) \]

2. List the title of books written by the author 'Silberschatz'.

 \[\pi_{\text{Title}} \left(\sigma_{\text{AName}=\text{'Silberschatz'}} \left(\sigma_{\text{has-written.DocId}=\text{BOOKS.DocID}} \left(\text{has-written} \times \text{BOOKS} \right) \right) \right) \]

 or

 \[\pi_{\text{Title}} \left(\sigma_{\text{has-written.DocId}=\text{BOOKS.DocID}} \left(\sigma_{\text{AName}=\text{'Silberschatz'}} \left(\text{has-written} \times \text{BOOKS} \right) \right) \right) \]

3. As 2., but not books that have the keyword 'database'.

 ... as for 2. ...

 \[\pi_{\text{Title}} \left(\sigma_{\text{describes.DocId}=\text{BOOKS.DocID}} \left(\sigma_{\text{Keyword}=\text{'database'}} \left(\text{describes} \times \text{BOOKS} \right) \right) \right) \]

4. Find the name of the youngest student.

 \[\pi_{\text{StName}} \left(\text{STUDENTS} \right) -
 \pi_{\text{S1.StName}} \left(\sigma_{\text{S1.Age}>\text{S2.Age}} \left(\rho_{\text{S1}} \left(\text{STUDENTS} \times \rho_{\text{S2}} \left(\text{STUDENTS} \right) \right) \right) \right) \]

5. Find the title of the oldest book.

 \[\pi_{\text{Title}} \left(\text{BOOKS} \right) -
 \pi_{\text{B1.Title}} \left(\sigma_{\text{B1.Year}>\text{B2.Year}} \left(\rho_{\text{B1}} \left(\text{BOOKS} \times \rho_{\text{B2}} \left(\text{BOOKS} \right) \right) \right) \right) \]
Additional Operators

These operators do not add any power (expressiveness) to the relational algebra but simplify common (often complex and lengthy) queries.

- **Set-Intersection** \(\cap \)
- **Natural Join** \(\times \)
- **Condition Join** \(\times_C \) (also called Theta-Join)
- **Division** \(\div \)
- **Assignment** \(\leftarrow \)

Set-Intersection

- Notation: \(r \cap s \)
 Defined as \(r \cap s := \{ t \mid t \in r \text{ and } t \in s \} \)

- For \(r \cap s \) to be applicable,
 1. \(r \) and \(s \) must have the same arity
 2. Attribute domains must be compatible

- Derivation: \(r \cap s = r - (r - s) \)

- Example: given the relations \(r \) and \(s \)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(s)</th>
<th>(r \cap s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Natural Join

- Notation: \(r \Join s \)

- Let \(r, s \) be relations on schemas \(R \) and \(S \), respectively. The result is a relation on schema \(R \cup S \). The result tuples are obtained by considering each pair of tuples \(t_r \in r \) and \(t_s \in s \).

- If \(t_r \) and \(t_s \) have the same value for each of the attributes in \(R \cap S \) ("same name attributes"), a tuple \(t \) is added to the result such that
 - \(t \) has the same value as \(t_r \) on \(r \)
 - \(t \) has the same value as \(t_s \) on \(s \)

- Example: Given the relations \(R(A, B, C, D) \) and \(S(B, D, E) \)
 - Join can be applied because \(R \cap S \neq \emptyset \)
 - the result schema is \((A, B, C, D, E) \)
 - and the result of \(r \Join s \) is defined as
 \[
 \pi_{r.A, r.B, r.C, r.D, s.E}(\sigma_{r.B = s.B \land r.D = s.D}(r \times s))
 \]
• Example: given the relations r and s

\[
\begin{array}{cccc}
\alpha & 1 & \alpha & a \\
\beta & 2 & \gamma & a \\
\gamma & 4 & \beta & b \\
\alpha & 1 & \gamma & a \\
\delta & 2 & \beta & b \\
\end{array}
\quad
\begin{array}{ccc}
1 & a & \alpha \\
3 & a & \beta \\
1 & a & \gamma \\
2 & b & \delta \\
3 & b & \tau \\
\end{array}
\]

\[
\begin{array}{cccc}
\alpha & 1 & \alpha & a & \alpha \\
\alpha & 1 & \alpha & a & \gamma \\
\alpha & 1 & \gamma & a & \alpha \\
\alpha & 1 & \gamma & a & \gamma \\
\delta & 2 & \beta & b & \delta \\
\end{array}
\]

3. Relational Model and Relational Algebra
Condition Join

- Notation: \(r \bowtie_C s \)

\(C \) is a condition on attributes in \(R \cup S \), result schema is the same as that of Cartesian Product. If \(R \cap S \neq \emptyset \) and condition \(C \) refers to these attributes, some of these attributes must be renamed.

Sometimes also called \textit{Theta Join} \((r \bowtie_{\theta} s)\).

- Derivation: \(r \bowtie_C s = \sigma_C(r \times s) \)

- Note that \(C \) is a condition on attributes from both \(r \) and \(s \)

- Example: given two relations \(r, s \)

\[
\begin{array}{cccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}
\quad
\begin{array}{cccc}
D & E \\
3 & 1 \\
6 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
A & B & C & D & E \\
1 & 2 & 3 & 3 & 1 \\
1 & 2 & 3 & 6 & 2 \\
4 & 5 & 6 & 6 & 2 \\
\end{array}
\]
If \(C \) involves only the comparison operator “=”, the condition join is also called \textit{Equi-Join}.

- Example 2:

\[
\begin{array}{|c|c|c|}
\hline
A & B & C \\
\hline
4 & 5 & 6 \\
7 & 8 & 9 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|}
\hline
C & D \\
\hline
6 & 8 \\
10 & 12 \\
\hline
\end{array}
\]

\[
r \Join_{C=SC} (\rho_{S(SC,D)}(s))
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
A & B & C & SC & D \\
\hline
4 & 5 & 6 & 6 & 8 \\
\hline
\end{array}
\]
Division

- **Notation:** \(r \div s \)

- **Precondition:** attributes in \(S \) must be a subset of attributes in \(R \), i.e., \(S \subseteq R \). Let \(r, s \) be relations on schemas \(R \) and \(S \), respectively, where

\[
\begin{align*}
- & R(A_1, \ldots, A_m, B_1, \ldots, B_n) \\
- & S(B_1, \ldots, B_n)
\end{align*}
\]

The result of \(r \div s \) is a relation on schema \(R - S = (A_1, \ldots, A_m) \)

- **Suited for queries that include the phrase “for all”.**

The result of the division operator consists of the set of tuples from \(r \) defined over the attributes \(R - S \) that match the combination of every tuple in \(s \).

\[
r \div s := \{ t \mid t \in \pi_{R-S}(r) \land \forall u \in s: tu \in r \}\]

3. Relational Model and Relational Algebra
• Example: given the relations r, s:

$$r$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>a</td>
<td>α</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>β</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

$$s$$

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

$$r \div s$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>a</td>
<td>γ</td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>γ</td>
</tr>
</tbody>
</table>
Assignment

- Operation (\leftarrow) that provides a convenient way to express complex queries.
 Idea: write query as sequential program consisting of a series of assignments followed by an expression whose value is “displayed” as the result of the query.

- Assignment must always be made to a temporary relation variable.
 The result to the right of \leftarrow is assigned to the relation variable on the left of the \leftarrow. This variable may be used in subsequent expressions.

Example Queries

1. *List each book with its keywords.*

 BOOKS \Join Descriptions

 Note that books having no keyword are not in the result.

2. *List each student with the books s/he has borrowed.*

 BOOKS \Join (borrows \Join STUDENTS)
3. List the title of books written by the author 'Ullman'.

\[\pi_{\text{Title}}(\sigma_{\text{AName} = 'Ullman'}(\text{BOOKS} \bowtie \text{has-written})) \]

or

\[\pi_{\text{Title}}(\text{BOOKS} \bowtie \sigma_{\text{AName} = 'Ullman'}(\text{has-written})) \]

4. List the authors of the books the student 'Smith' has borrowed.

\[\pi_{\text{AName}}(\sigma_{\text{StName} = 'Smith'}(\text{has-written} \bowtie (\text{borrows} \bowtie \text{STUDENTS}))) \]

5. Which books have both keywords 'database' and 'programming'?

\[\text{BOOKS} \bowtie (\pi_{\text{DocId}}(\sigma_{\text{Keyword} = 'database'}(\text{Descriptions}))) \cap \pi_{\text{DocId}}(\sigma_{\text{Keyword} = 'programming'}(\text{Descriptions}))) \]

or

\[\sigma_{\text{Keyword} \in \{('database'), ('programming')\}}(\text{BOOKS} \bowtie (\text{Descriptions} \div \{('database'), ('programming')\})) \]

with \{('database'), ('programming')\} being a constant relation.

6. Query 4 using assignments.

\[\text{temp1} \leftarrow \text{borrows} \bowtie \text{STUDENTS} \]
\[\text{temp2} \leftarrow \text{has-written} \bowtie \text{temp1} \]
\[\text{result} \leftarrow \pi_{\text{AName}}(\sigma_{\text{StName} = 'Smith'}(\text{temp2})) \]
Modifications of the Database

- The content of the database may be modified using the operations `insert`, `delete` or `update`.
- Operations can be expressed using the assignment operator.
 \[r_{new} \leftarrow \text{operations on}(r_{old}) \]

Insert

- Either specify tuple(s) to be inserted, or write a query whose result is a set of tuples to be inserted.
- \[r \leftarrow r \cup E, \text{ where } r \text{ is a relation and } E \text{ is a relational algebra expression.} \]
- \[\text{STUDENTS} \leftarrow \text{STUDENTS} \cup \{(1024, 'Clark', 'CSE', 26)\} \]

Delete

- Analogous to insert, but \(-\) operator instead of \(\cup\) operator.
- Can only delete whole tuples, cannot delete values of particular attributes.
- \[\text{STUDENTS} \leftarrow \text{STUDENTS} - (\sigma_{\text{major}='CS'}(\text{STUDENTS})) \]

Update

- Can be expressed as sequence of delete and insert operations. Delete operation deletes tuples with their old value(s) and insert operation inserts tuples with their new value(s).